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Fig. 1. Overview of Deblur-GS. Given a set of multi-view blurry images, our method can reconstruct a
sharp 3D Gaussian-based radiance field and render clearly deblurred novel view results in real-time.

Novel view synthesis has undergone a revolution thanks to the radiance field method. The introduction
of 3D Gaussian splatting (3DGS) has successfully addressed the issues of prolonged training times and
slow rendering speeds associated with the Neural Radiance Field (NeRF), all while preserving the quality
of reconstructions. However, 3DGS remains heavily reliant on the quality of input images and their initial
camera pose initialization. In cases where input images are blurred, the reconstruction results suffer from
blurriness and artifacts. In this paper, we propose the Deblur-GS method for reconstructing 3D Gaussian
points to create a sharp radiance field from a camera motion blurred image set. We model the problem of
motion blur as a joint optimization challenge involving camera trajectory estimation and time sampling. We
cohesively optimize the parameters of the Gaussian points and the camera trajectory during the shutter time.
Deblur-GS consistently achieves superior performance and rendering quality when compared to previous
methods, as demonstrated in evaluations conducted on both synthetic and real datasets.
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1 INTRODUCTION
Recovering 3D scene information from 2D images has long been a persistent challenge in the
fields of computer vision and computer graphics. The emergence of Neural Radiance Fields (NeRF)
[Mildenhall et al. 2021] has completely revolutionized the photo-realistic novel view synthesis. To
achieve a high-quality NeRF, a crucial prerequisite is to obtain accurate camera poses and a clear
input image set. However, in real-world data acquisition, factors like camera jitter and shutter time
often result in motion blurring within the dataset. Additionally, commonly used structure-from-
motion (SFM) methods, such as colmap [Schönberger and Frahm 2016], frequently introduce errors
or even fail to compute camera poses when dealing with blurred images, consequently leading to
low-quality reconstructions.
In recent years, several approaches have tackled the problem of NeRF dealing with blurred

image sets. Deblur-NeRF[Ma et al. 2022] employs trainable Deformable Sparse Kernels (DSK) to
model spatially-varying blur kernels, achieving deblurring through the effect of deconvolution.
BAD-NeRF and ExBluRF, on the other hand, achieve the removal of camera motion blur by jointly
optimizing camera poses and radiance field parameters. However, NeRF-based methods typically
require extensive training time and are not suitable for real-time rendering.
The advent of 3D Gaussian splatting extends the volumetric rendering of NeRF to point cloud

rendering, offering a significant boost in rendering speed and reduced training time without
sacrificing rendering quality, much like NeRF. However, similar to NeRF, 3DGS critically relies
on dataset quality and camera pose accuracy, making it incapable of reconstructing high-quality
radiance field results from datasets suffer from motion blur.

In this paper, we propose a motion blur removal and reconstruction method based on 3D Gaussian
splatting, aiming to restore clear radiance fields from blurred datasets. When compared to prior
methods, our approach demonstrates advantages in reconstruction quality and performance, both
on real and synthetic datasets. Our main contributions include:

• We formulate the problem of motion blur removal by modeling it as an estimation of camera
motion trajectories within the shutter time, jointly optimizing 3D Gaussian point parameters
and camera pose parameters.

• We derived the camera pose derivative for 3D Gaussian splatting and proposed a simplified
camera pose estimation method based on its explicit representation.

• We verify through experiments that our method can deblur motion blurry image sets and
synthesize sharp results in novel views.

2 BACKGROUND AND RELATEDWORK
In this section, we review three main areas of related works: novel view synthesis, image deblurring,
and radiance field deblurring.

2.1 Novel View Synthesis
The emergence of Neural Radiance Fields (NeRFs) has completely revolutionized novel view syn-
thesis of scenes from multi-view photos. NeRF learns an implicit neural scene representation that
utilizes an MLP to map 3D coordinates (𝑥,𝑦, 𝑧) and view dependency (𝜃, 𝜙) to color and density
through differentiable volume rendering. Several works are proposed to improve its efficiency
[Chen et al. 2022b; Kerbl et al. 2023; Müller et al. 2022; Sun et al. 2022a] and quality [Barron et al.
2023; Suhail et al. 2022; Verbin et al. 2022; Wang et al. 2023a]. The NeRF-based approaches are also
applied to numerous 3D vision and graphics application, such as human body [Liu et al. 2021; Peng
et al. 2021a,b; Weng et al. 2022], face [Gafni et al. 2021; Sun et al. 2022b; Zhuang et al. 2021], hair
[Rosu et al. 2022], large scene reconstruction [Mi and Xu 2023; Tancik et al. 2022], and simultaneous
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localization and mapping (SLAM) [Li et al. 2022; Rosinol et al. 2023; Zhu et al. 2022]. The neural
implicit representation is also suitable for 3D content generation task [Cao et al. 2023; Chan et al.
2021; Gu et al. 2021; Höllein et al. 2023; Lin et al. 2023]. Moreover, some works attempt to reconstruct
sharp NeRF from burry input images [Lee et al. 2023b; Ma et al. 2022; Wang et al. 2023b], which
regularly occur during image acquisition in real-world scenarios.

More recently, point-based representation [Kopanas et al. 2022; Xu et al. 2022; Yifan et al. 2019;
Zhang et al. 2022] has been proposed and widely used for its efficiency in rendering. Zhang
et al. [2022] propose a framework that begins with a uniformly-sampled random point cloud and
learns per-point position and view-dependent appearance, using a differentiable point rasterizer.
Additionally, 3D Gaussian splatting [Kerbl et al. 2023] enables real-time rendering of novel views
by its pure explicit representation and the novel differentiable point-based splatting rasterizer.
However, most of these approaches still depend on accurately pre-computed camera parameters
and are unable to handle blurry input images. Our method utilizes explicit point representation
and brings camera motion blur deblurring into the 3D Gaussian splatting framework.

2.2 Image Deblurring
Deblurring is a long-standing problem in the image restoration area due to its ill-posed nature.
Existingmethods can be generally classified into twomain categories. One formulates the deblurring
problem as an optimization problem, where the latent sharp images and the blur kernel are jointly
optimized using gradient descent [Cho and Lee 2009; Fergus et al. 2006; Krishnan and Fergus
2009; Lee et al. 2018; Levin et al. 2009; Park and Mu Lee 2017; Shan et al. 2008; Xu and Jia 2010].
Another phase of the task is an end-to-end learning problem using deep convolution neural network
techniques [Kupyn et al. 2019; Nah et al. 2017; Tao et al. 2018]. Some of the methods can also handle
video deblurring [Su et al. 2017]. Our proposed method follows works [Lee et al. 2018; Park and
Mu Lee 2017] that jointly estimate multi-view sharp images and the blur kernel formulated by a
cameramotion trajectory and depthmap. They formulate the problem under the classic optimization
framework to maximize both the self-view photo-consistency and cross-view photo-consistencies.
On the other hand, we use 3D Gaussian points representation and differentiable point splatting
rasterizer, which can better preserve the multi-view consistency and provide high-quality novel
view synthesis.

2.3 Radiance Field Deblurring
Reconstructing accurate radiance fields using blurry input images has been actively researched by
the NeRF community. Deblur-NeRF [Ma et al. 2022] introduces an end-to-end framework that jointly
estimates the pixel-wise spatial varying blur kernel and the latent sharp radiance field. However,
the blur kernel relies on the training of the deep neural network without geometric and appearance
consistency in 3D scene representation. DP-NeRF [Lee et al. 2023a] proposes a novel blurring kernel
with two physical priors derived from the physical process of blur acquisition and ray casting to
address the issue from Deblur-NeRF. Meanwhile, BAD-NeRF [Wang et al. 2023b] models camera
motion blur as camera motion trajectory estimation, requiring a camera pose estimation method
[Bian et al. 2023; Chen et al. 2023; Lin et al. 2021; Park et al. 2023; Wang et al. 2021]. ExBluRF [Lee
et al. 2023b] extends the BAD-NeRF to more complex camera motion trajectory estimation and
voxel-based NeRF, achieving efficiency and better results in extremely blurry images.

However, deblurring remains an open challenge in the context of 3D Gaussian-based radiance
field representation. Lee et al. [2024] were the first to address the issue of blurry 3D Gaussian scene
reconstruction. They posit that the blurriness of the Gaussian scene is attributed to the covariances
of the Gaussian points. To tackle this, they employed an MLP that takes the position, rotation,
scale, and viewing direction of 3D Gaussians as inputs and outputs offsets for rotation and scale.
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Fig. 2. The pipeline of Deblur-GS. We introduce a physics model that generates camera motion blurred
images for 3D Gaussian-based radiance field. Through the interpolation of camera poses over the shutter time,
we generate multiple images along the camera motion trajectory and blend them to simulate the temporal
exposure process. Minimizing the photometric loss between the blending results and the blurred input images
allows us to derive the camera motion trajectory along with the representation of the sharp radiance field in
3D Gaussian points.

With predicted offsets for each Gaussian, they selectively enlarged the covariances of the Gaussian
points corresponding to the blurred parts in the training images, achieving a deblurring result. It’s
important to note that enlarging the covariances of the Gaussian points is analogous to applying a
Gaussian blur kernel to the corresponding pixel. Therefore, Lee et al. (2024) can effectively address
pixel-wise blur effects, such as defocus blur, but they lack the capability to model motion-related
blur. In contrast, our method is specifically designed to address camera motion blur effects in 3D
Gaussian scenes, addressing the challenge from a physics-based perspective.

3 OVERVIEW
The advent of 3D Gaussian splatting has ushered in high-quality real-time rendering for neural
radiation fields. To address challenges arising from inaccurate pose estimation and camera motion-
blurred image inputs in 3D Gaussian scene reconstruction, we introduce Deblur-GS——a novel view
synthesis method using 3D Gaussian splatting from camera motion-blurred images. The pipeline
of our method is shown in Fig.2. Following the framework of 3D Gaussian splatting, we sample the
keyframe pose from camera motion trajectory, which can also represent a global rigid transform of
the Gaussian points (discussed in Sec.6). By summing up the rendering images along the camera
motion trajectory with appropriate weighting, we can simulate the camera motion blur effect. Using
a differentiable splatting rasterizer, we can back-propagate the gradient from photometric loss
and jointly optimize the Gaussian scene parameters and the motion trajectory representation. We
will first review the basic idea of 3D Gaussian scene representation in Sec.4. Then, we will discuss
the modeling of the camera motion blur in Sec.5, including the physics-based camera motion blur
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formulation and camera motion trajectory representation. In Sec.6, we will discuss the camera
pose estimation in 3D Gaussian scene representation, which enables us to optimize the camera
motion trajectory. We will describe our experiment in detail in Sec.7 and show some evaluation
and comparison results in Sec.8.

4 3D GAUSSIAN SCENE REPRESENTATION
We present the 3D scene as a set of 3D Gaussian points coupled with opacity and spherical
harmonics:

𝐺𝐺𝐺 = {𝐺𝑖 : (𝑚𝑚𝑚𝑖 ,ΣΣΣ𝑖 ,Λ𝑖 ,𝑌𝑌𝑌 𝑖 ) |𝑖 = 1, · · · , 𝑁 } (1)

Each 3D Gaussian point𝐺𝑖 is defined by position𝑚𝑚𝑚𝑖 ∈ R3, 3D covariance matrix ΣΣΣ𝑖 ∈ R3×3, opacity
Λ𝑖 ∈ R and Spherical Harmonic coefficients𝑌𝑌𝑌 𝑖 ∈ R𝑘 (𝑘 represents the degrees of freedom). We can
also parameterize the 3D covariance matrix as a scaling matrix 𝑆𝑆𝑆 and a rotation matrix 𝑅𝑅𝑅, as the
covariance matrix ΣΣΣ of a 3D Gaussian is analogous to describing the configuration of an ellipsoid:

ΣΣΣ = 𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑅𝑅𝑅𝑇 (2)

We store the scaling and rotation matrix separately: a 3D vector 𝑠𝑠𝑠 ∈ R3 for scaling and a 4D
quaternion 𝑞𝑞𝑞 ∈ R4 for rotation. Therefore, we can optimize both factors independently, simplifying
the learning process of the 3D Gaussian.

Given camera pose𝑇𝑇𝑇 = {𝑅𝑅𝑅𝑡 , 𝑡𝑡𝑡𝑡 } and camera intrinsics matrix𝐾𝐾𝐾 , the covariance and mean of the
3D Gaussian points 𝐺 are projected on the 2D image plane for rendering with:

ΣΣΣ′ = 𝐽𝐽𝐽𝑇𝑇𝑇ΣΣΣ𝑇𝑇𝑇𝑇 𝐽𝐽𝐽𝑇

𝑚𝑚𝑚′ =
𝐾𝐾𝐾𝑇𝑇𝑇𝑚𝑚𝑚

𝐷

(3)

where 𝐽𝐽𝐽 is the Jacobian of the affine approximation of the projective transformation and 𝐷 denotes
the z-axis coordinate of projection 𝑚𝑚𝑚. After projection, we can calculate the blend weight by
multiplying the Gaussian and the opacity of the point:

𝛼 = Λ𝑒−
1
2𝑥𝑥𝑥

𝑇 Σ′−1𝑥𝑥𝑥 (4)

The color of a pixel can be rendered by performing front-to-back 𝛼-blending in-depth order:

�̂�𝐶𝐶 =
∑︁
𝑖∈N

𝑐𝑐𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (5)

where 𝑐𝑖 is the Gaussian point color obtained by learnable Spherical Harmonic coefficient 𝑌𝑌𝑌 .
Similarly, the depth of the Gaussian scene can be rendered by:

�̂�𝐷𝐷 =
∑︁
𝑖∈N

𝑑𝑑𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (6)

where 𝑑𝑖 is the depth of the center of the Gaussian point, which is obtained by projecting the
Z-value of the position in the view space.
To perform scene reconstruction, given the ground truth camera poses that determine the 3D

Gaussian projection, we can fit a set of initial Gaussian points to the target scene by optimizing
their parameters, i.e.,𝑚 and Σ. With a differentiable rasterizer, we can optimize all parameters
through a photometric loss L. However, with imperfect camera poses and blurry input images, the
above process makes it difficult to obtain sharp and consistent novel view synthesis results.
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5 CAMERA MOTION BLURRING
Motion blur is a common manifestation of camera shake that occurs when the camera’s shutter
speed is too slow to maintain a stable camera pose. The mathematical modeling of this process is
integrating sharp image results 𝐼𝐼𝐼 𝑡 during shutter time:

𝐵𝐵𝐵 =

∫ 𝜏

0
𝑤𝑡𝐼𝐼𝐼 𝑡d𝑡 (7)

where 𝜏 is the shutter time.𝑤𝑡 is the sampling weight, which represents the receiving efficiency
of the camera’s photosensitive element at timestamp 𝑡 . In practice, we can uniformly sample 𝑁
timestamp within the shutter time as keyframe, the 𝑖-th keyframe will be at timestamp 𝑡 = 𝑖

𝑁−1𝜏 .
The accumulation of the rendering sharp results will become the blurred result as below:

�̂�𝐵𝐵 =

𝑁−1∑︁
𝑖=0

𝑤𝑖𝐼𝐼𝐼 𝑖 (8)

The sampling weight should satisfy
∑𝑁−1
𝑖=0 𝑤𝑖 = 1. For uniform sampling,𝑤𝑖 can be simply set as

1/𝑁 . In our method,𝑤𝑤𝑤 = (𝑤0,𝑤1, · · · ,𝑤𝑁−1) is a learnable parameter that is jointly optimized with
other parameters.

5.1 Camera Motion Trajectory Approximation
Since the camera can move in an arbitrary but smooth trajectory during shutter time, we param-
eterize the camera pose in𝑇𝑇𝑇 ∈ 𝑆𝐸 (3) and approximate the camera trajectory with linear, cubic
spline and Bézier curve interpolation in the Lie algebra of 𝑆𝐸 (3).

Given the typically short shutter time and the relatively small amplitude of camera motion, linear
interpolation is generally adequate for most cases. Given start point𝑇𝑇𝑇 0 and endpoint𝑇𝑇𝑇 1, the camera
pose at timestamp 𝑡 ∈ [0, 𝜏] can be written as:

𝑇𝑇𝑇 𝑡 =𝑇𝑇𝑇 0 · exp
( 𝑡
𝜏
log

(
𝑇𝑇𝑇 −1
0 ·𝑇𝑇𝑇 1

) )
(9)

where 𝜏 is the camera shutter time.
For cubic spline interpolation, however, four control points𝑇𝑇𝑇 0,𝑇𝑇𝑇 1,𝑇𝑇𝑇 2, and𝑇𝑇𝑇 3 are required to

represent the camera trajectory. We introduce the parameterization 𝑢 = 𝑡/𝜏 ∈ [0, 1]. Based on the
De Boor-Cox formula, the matrix representation of cumulative basis functions �̃�𝐵𝐵(𝑢) for the splines
can be written as follows [Mueggler et al. 2018]:

�̃�𝐵𝐵(𝑢) =𝐶𝐶𝐶


1
𝑢

𝑢2

𝑢3

 𝐶𝐶𝐶 =
1
6


6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

 (10)

the interpolated camera pose at timestamp 𝑡 can be represented as:

𝑇𝑇𝑇 (𝑢 (𝑡)) =𝑇𝑇𝑇 0

2∏
𝑗=0

exp
(
�̃�𝐵𝐵 𝑗+1 (𝑢 (𝑡)) · ΩΩΩ 𝑗

)
(11)

where �̃�𝐵𝐵 𝑗 is the 𝑗-th entry (0-based) of vector �̃�𝐵𝐵. The incremental pose from𝑇𝑖−1 to𝑇𝑖 is encoded by
the twist

ΩΩΩ𝑖 = log
(
𝑇𝑇𝑇 −1
𝑖−1 ·𝑇𝑇𝑇 𝑖

)
(12)

For some extremely blurry input images, linear and cubic spline interpolation may not be enough.
Therefore, we also implement 𝐾 order Bézier curve interpolation, which requires 𝐾 + 1 control
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points 𝑇𝑖 (𝑖 = 0, 1, · · · , 𝐾). Applying De Casteljau’s algorithm in Lie algebra representation, the
interpolated camera pose is derived as follows:

𝑇𝑇𝑇 𝑡 =

𝐾∏
𝑗=0

exp
((
𝐾

𝑗

)
(1 − 𝑢)𝐾− 𝑗𝑢 𝑗 · log(𝑇𝑇𝑇 𝑖 )

)
(13)

where𝑢 = 𝑡/𝜏 ∈ [0, 1]. It can be derived that𝑇𝑇𝑇 𝑡 is differentiable with respect to𝑇𝑇𝑇 𝑖 (𝑖 = 0, 1, 2, · · · , 𝐾),
which allows us to optimize the motion blurring process by optimizing𝑇𝑇𝑇 𝑖 (𝑖 = 0, 1, 2, · · · , 𝐾).

6 DIFFERENTIABLE POSE ESTIMATION
The photometric loss L is 𝐿1 loss combined with a D-SSIM loss:

L = 𝜆L1 + (1 − 𝜆)L𝐷−𝑆𝑆𝐼𝑀 (14)

We use 𝜆 = 0.2 for all experiments.
According to eq.5 and eq.3, we can derive the derivative of L with respect to the camera poses.

𝜕L
𝜕𝑇𝑇𝑇

=
𝜕L
𝜕�̂�𝐶𝐶

(∑︁
𝑖∈N

𝜕�̂�𝐶𝐶

𝜕𝑐𝑐𝑐𝑖

𝜕𝑐𝑐𝑐𝑖

𝜕𝑇𝑇𝑇
+

∑︁
𝑖∈N

𝜕�̂�𝐶𝐶

𝜕𝛼𝑖

𝜕𝛼𝑖

𝜕𝑇𝑇𝑇

)
=

∑︁
𝑖∈N

𝜕L
𝜕�̂�𝐶𝐶

(
𝜕�̂�𝐶𝐶

𝜕𝑐𝑐𝑐𝑖

𝜕𝑐𝑐𝑐𝑖

𝜕𝑇𝑇𝑇
+ 𝜕�̂�𝐶𝐶

𝜕𝛼𝑖

(
𝜕𝛼𝑖

𝜕ΣΣΣ′
𝑖

𝜕ΣΣΣ′
𝑖

𝜕𝑇𝑇𝑇
+ 𝜕𝛼𝑖

𝜕𝑚𝑚𝑚′
𝑖

𝜕𝑚𝑚𝑚′
𝑖

𝜕𝑇𝑇𝑇

))
=

∑︁
𝑖∈N

𝜕L
𝜕�̂�𝐶𝐶

(
𝜕�̂�𝐶𝐶

𝜕𝑐𝑐𝑐𝑖

𝜕𝑐𝑐𝑐𝑖

𝜕𝑇𝑇𝑇
+ 𝜕�̂�𝐶𝐶

𝜕𝛼𝑖

(
𝜕𝛼𝑖

𝜕ΣΣΣ′
𝑖

𝜕(𝐽𝐽𝐽𝑇𝑇𝑇ΣΣΣ𝑖𝑇𝑇𝑇𝑇 𝐽𝐽𝐽𝑇 )
𝜕𝑇𝑇𝑇

+ 𝜕𝛼𝑖

𝜕𝑚𝑚𝑚′
𝑖

𝜕(𝐾𝐾𝐾𝑇𝑇𝑇𝑚𝑚𝑚𝑖 )
𝜕𝑇𝑇𝑇𝐷𝑖

)) (15)

We split three components from Eq.15 into color term 𝜕𝑐𝑐𝑐𝑖
𝜕𝑇

, covariance term 𝜕 (𝐽𝐽𝐽𝑇𝑇𝑇ΣΣΣ𝑖𝑇𝑇𝑇𝑇 𝐽𝐽𝐽𝑇 )
𝜕𝑇𝑇𝑇

and position
term 𝜕 (𝐾𝐾𝐾𝑇𝑇𝑇𝑚𝑚𝑚𝑖 )

𝜕𝑇𝑇𝑇𝐷𝑖
.

The color term is associated with the shading process using spherical harmonics, which encode
low-frequency radiance information into a spherical basis and compute the shading result with the
viewpoint direction. Given that we optimize the camera pose with a short step size, we can assume
that the color of the Gaussian points remains unchanged throughout the process. Therefore, we
can just eliminate the color term to simplify our calculation.

The covariance term is related to the projection of the 3D covariance of the Gaussian points.When
the distribution of the Gaussian points approaches a sphere, the covariance term becomes small.
However, if the distribution of the Gaussian points forms an elongated ellipsoid, the covariance
term could become significantly large, causing instability. In practice, we observed that ignoring
the covariance term can enhance the robustness and stability of the optimization process.
Finally, the only term we should take care of for the gradient back-propagation is the position

term. The gradient with respect to camera pose then can be written as:

𝜕L
𝜕𝑇𝑇𝑇

=
∑︁
𝑖∈N

𝜕L
𝜕�̂�𝐶𝐶

𝜕�̂�𝐶𝐶

𝜕𝛼𝑖

𝜕𝛼𝑖

𝜕𝑚𝑚𝑚′
𝑖

𝜕(𝐾𝐾𝐾𝑇𝑇𝑇𝑚𝑚𝑚𝑖 )
𝜕𝑇𝑇𝑇𝐷𝑖

(16)

Due to the explicit representation of 3D Gaussian, we can derive that transforming the camera
pose is equivalent to transforming the position of the Gaussian points.

𝐾𝐾𝐾 (𝑇𝑇𝑇𝑇𝑇𝑇 )𝑚𝑚𝑚𝑖 = 𝐾𝐾𝐾𝑇𝑇𝑇 (𝑇𝑇𝑇𝑚𝑚𝑚𝑖 ) (17)

where𝑇𝑇𝑇 is an external transformation applied to the camera pose𝑇𝑇𝑇 , equivalent to directly applying
it to the position of the Gaussian points. Therefore, instead of optimizing the camera pose directly,
we optimize a global transformation for all Gaussian points per camera. This approach allows
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us to pass the pre-transformed Gaussian points position �̂�𝑚𝑚𝑖 =𝑇𝑇𝑇𝑚𝑚𝑚𝑖 to the Gaussian differentiable
renderer without any modification. The differentiable renderer will manage the gradient of L with
respect to �̂�𝑚𝑚, while PyTorch automatic differentiation will handle the gradient of �̂�𝑚𝑚 with respect to
𝑇𝑇𝑇 . Combining these, we obtain the desired gradient.

𝜕L
𝜕𝑇𝑇𝑇

=
𝜕L
𝜕�̂�𝑚𝑚

𝜕�̂�𝑚𝑚

𝜕𝑇𝑇𝑇
(18)

7 IMPLEMENTATION
7.1 Dataset
To evaluate the performance of our method, we utilized both synthetic and real datasets from
ExBluRF [Lee et al. 2023b]. The ExBluRF synthetic dataset, derived from DeblurNeRF [Ma et al.
2022], was synthesized using Blender [Community 2018]. Each scene consists of 29 blurry training
images and 5 sharp test images. The original Deblur-NeRF datasets assume linear camera motion in
constant velocity within the shutter time, generating blurry images by averaging rendering results
obtained through linearly interpolating poses between the original and randomly perturbed poses
for each view. Blender exported ground truth camera poses during rendering. ExBluRF introduces
more challenging motion-blurred images with random 6-DOF camera motion trajectories. The
real datasets from ExBluRF were captured by a dual-camera system, where one camera captured a
single blurry image with a long exposure time, and the other captured a sequence of sharp images
during the exposure time of the blurry image. Eight scenes were captured, each consisting of 20
to 40 multi-view blurry images and corresponding sequences of sharp images. Camera poses and
sparse point clouds for the real datasets were estimated using structure-from-motion (i.e., COLMAP
[Schönberger and Frahm 2016]) applied to the corresponding sharp images.

7.2 Implementation Detail
Deblur-GS is implemented in Python with the PyTorch framework. We extend the differentiable
Gaussian splatting rasterizer to support depth, pose, and cumulative opacity for both forward
and backward propagation. Both the Gaussian scene parameters and camera pose parameters
are optimized with the two separate Adam optimizer [Kingma and Ba 2014]. The learning rate
of the pose optimizer exponentially decays from 1 × 10−3 to 1 × 10−5. We choose 7 order Bézier
interpolation and sample 31 points on the camera motion trajectory for comparison. We train our
model for 90K iterations on a single NVIDIA RTX 3090 GPU. The control points of the camera
trajectory overlap during initialization and they will be optimized to different positions during
training. We use COLMAP [Schönberger and Frahm 2016] to initialize the Gaussian points and
control points.

8 RESULTS
We compare the deblurring and novel view synthesis performance with Deblur-NeRF [Ma et al.
2022], BAD-NeRF [Wang et al. 2023b], ExBluRF [Lee et al. 2023b] and 2D image deblurring methods
[Chen et al. 2022a; Zamir et al. 2022] with 3D Gaussian splatting. Deblur-NeRF jointly optimizes the
neural radiance field and 2D pixel-wise blur kernel estimation. BAD-NeRFmodels the cameramotion
using the 6-DOF linear trajectory. We choose two state-of-the-art 2D image deblurring methods for
comparison, which are Restormer [Zamir et al. 2022] and NAFNet [Chen et al. 2022a]. We employ
the image deblurring method to deblur the training images independently, and subsequently, the
deblurred images are utilized for Gaussian scene reconstruction. We follow the default configuration
of the official implementation of Deblur-NeRF [Ma et al. 2022], BAD-NeRF [Wang et al. 2023b], and
ExBluRF [Lee et al. 2023b], training them for 90K iterations instead of 200K in the original papers.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.



Deblur-GS: 3D Gaussian Splatting from Camera Motion Blurred Images 1:9

Table 1. Quantitative comparison of image deblurring on the real dataset of ExBluRF.

camellia jars jars2 stone_lantern sunflowers
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS + Restormer 24.50 0.65 0.50 25.71 0.71 0.46 25.12 0.74 0.41 25.53 0.78 0.40 24.55 0.76 0.47
3DGS + NAFNet 24.07 0.61 0.56 25.38 0.69 0.54 23.70 0.718 0.51 23.11 0.75 0.50 26.93 0.77 0.48
Deblur-NeRF 28.15 0.70 0.41 27.85 0.73 0.44 26.92 0.76 0.44 26.58 0.78 0.42 31.34 0.84 0.36
BAD-NeRF 14.93 0.42 0.66 13.19 0.44 0.65 10.99 0.41 0.65 9.56 0.21 0.68 17.69 0.60 0.60
ExbluRF 25.41 0.63 0.35 25.65 0.67 0.37 26.94 0.78 0.34 26.62 0.78 0.37 28.66 0.80 0.32
Deblur-GS (Ours) 29.16 0.79 0.28 31.35 0.84 0.27 31.27 0.85 0.28 30.61 0.86 0.29 33.22 0.89 0.27

Table 2. Quantitative comparison of novel view synthesis on the real dataset of ExBluRF.

camellia jars jars2 stone_lantern sunflowers
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS + Restormer 24.93 0.65 0.48 26.96 0.75 0.41 24.96 0.75 0.41 24.55 0.77 0.41 24.51 0.77 0.47
3DGS + NAFNet 24.07 0.61 0.56 25.32 0.68 0.52 25.13 0.76 0.43 23.19 0.77 0.45 25.80 0.73 0.50
Deblur-NeRF 27.33 0.67 0.44 27.12 0.70 0.47 26.64 0.74 0.46 26.67 0.76 0.45 30.10 0.81 0.39
BAD-NeRF 15.12 0.41 0.66 13.29 0.43 0.66 10.82 0.40 0.65 9.50 0.20 0.67 17.78 0.58 0.61
ExbluRF 24.79 0.61 0.38 25.16 0.64 0.41 26.63 0.76 0.37 25.78 0.76 0.41 27.62 0.77 0.35
Deblur-GS (Ours) 28.78 0.78 0.29 31.59 0.84 0.27 30.56 0.84 0.29 30.98 0.87 0.28 33.05 0.89 0.28

Table 3. Quantitative comparison of novel view synthesis on the synthesis dataset of ExBluRF.

cozyroom factory pool tanabata
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS + Restormer 21.25 0.73 0.25 18.88 0.51 0.47 26.62 0.74 0.33 20.25 0.63 0.36
3DGS + NAFNet 20.82 0.70 0.36 18.68 0.49 0.54 24.81 0.67 0.49 19.34 0.58 0.45
Deblur-NeRF 25.94 0.83 0.22 19.42 0.51 0.52 28.56 0.79 0.30 23.10 0.73 0.34
BAD-NeRF 11.28 0.18 0.66 10.14 0.20 0.68 12.69 0.39 0.73 9.42 0.10 0.70
ExbluRF 28.56 0.89 0.14 26.92 0.81 0.29 27.30 0.76 0.35 26.81 0.85 0.22
Deblur-GS (Ours) 29.97 0.89 0.086 27.11 0.83 0.27 29.45 0.82 0.24 28.48 0.90 0.16

Table 4. Standard deviation comparison of Deblur-GS on the real dataset of ExBluRF.

camellia jars jars2 stone_lantern sunflowers
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIP PSNR SSIM LPIPS

Image Deblurring 1.073 0.0170 0.018 1.000 0.014 0.016 0.970 0.008 0.014 1.356 0.027 0.028 0.703 0.013 0.015
Novel View Synthesis 1.252 0.030 0.038 1.055 0.015 0.021 1.338 0.016 0.017 1.394 0.023 0.017 1.010 0.012 0.018

It is based on the observation that our method achieves full convergence by the 90K iteration mark,
thereby allowing for a more efficient alignment with our experiment. Note that we use cubic spline
interpolation for BAD-NeRF in our experiment. We evaluate the deblurring and novel view image
synthesis performance with the dataset from ExBluRF [Lee et al. 2023b].

The rendered images are evaluated by PSNR, SSIM [Hore and Ziou 2010] and LPIPS [Zhang et al.
2018] as metrics. The three metrics are vulnerable to misalignment. Note that the reconstructed
sharp image can be any rendering result along the estimated camera trajectory. To align with
the ground truth image, we keep the Gaussian scene parameters fixed and optimize the global
transform to determine the suitable camera pose for evaluation. This process is very efficient,
typically requiring only 10-15 seconds to converge.

8.1 Quantities Evaluation Results
Table 1 and Table 2 present the quantities evaluation results for image deblurring and novel view
synthesis respectively, using the real dataset from ExBluRF. Additionally, Table 3 showcases the
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Input Ground Truth Restormer+GS NAFNet+GS Deblur-NeRF ExBluRF Deblur-GS (Ours)

Fig. 3. Qualitative results of different methods The experimental results demonstrate that our method
achieves superior performance over prior methods in the dataset as well.

results obtained with the synthesis dataset from ExBluRF. They show that our method consistently
outperforms previous approaches on image deblurring and novel view synthesis. Table 4 presents the
standard deviation observed across various views within the real dataset from ExBluRF, highlighting
the method’s consistent performance. For the 2D image deblurring preprocess method using
Restormer and NAFNet, they struggle to generate deblurred results due to the absence of 3D
scene information during the deblurring process. Like our method, BAD-NeRF [Wang et al. 2023b]
jointly optimizes the camera motion trajectory with the BARF [Lin et al. 2021] based radiance field,
however, it failed to reconstruct the scene due to instability and insufficient training iterations.
On the other hand, our method, ExBluRF [Lee et al. 2023b] and Deblur-NeRF [Ma et al. 2022] can
consistently reconstruct the 3D scene, while our method produces sharper results than the other
two methods in the same training iteration.

8.2 Qualitative Evaluation Results
We also evaluate the qualitative performance of our method against the other methods. Fig.3
demonstrates that our method also outperforms other methods as in the quantitative evaluation
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Table 5. Comparison of memory cost of our method and baselines.

camellia jars jars2 stone_lantern

Restormer+GS 0.86GB 0.96GB 1.12GB 1.4GB
NAFNet+GS 0.77GB 0.74GB 1.11GB 1.46GB
Deblur-NeRF 13.53GB 13.19GB 13.23GB 13.5GB
BAD-NeRF 12.18GB 11.55GB 11.42GB 12.82GB
ExBluRF 10.04GB 9.76GB 9.77GB 10.1GB
Deblur-GS (Ours) 1.54GB 1.39GB 1.35GB 1.49GB

section. For the single image deblurring methods(i.e. Restormer [Zamir et al. 2022], NAFNet [Chen
et al. 2022a]) indeed can achieve impressive results on some datasets. However, they failed to
restore the sharp images and bring artifacts for the blurry images in Gaussian scene reconstruction.
Compared to the single image deblurring methods, Deblur-NeRF [Ma et al. 2022] can produce better
results. However, Deblur-NeRF [Ma et al. 2022] models motion blur by image convolution, using
MLP to estimate the point spread function, which is lack of camera motion and scene occlusion
information. Moreover, in the case of extremely blurry images, Deblur-NeRF [Ma et al. 2022]
requires an extended training duration with a larger blur kernel size. Otherwise, the latent 3D scene
tends to exhibit a slight blurriness, potentially leading to a lack of continuity in the reconstruction
of blurred views during training. Even though ExbluRF [Lee et al. 2023b] can already achieve great
results, with the help of 3D Gaussian scene representation, our method can converge faster and
produce sharper image results.

8.3 Performance Evaluation Results
We examine the efficiency of our method in terms of memory cost as shown in Tab.5. We observe
that our method consumes significantly less memory compared to other methods. Due to the
potent scene representation capability of 3D Gaussian, we can efficiently represent our scene using
an acceptable number of Gaussian points and minimal parameters, as opposed to employing a
neural network with a large number of parameters. Note that the 3D Gaussian splatting method
can achieve high framerate real-time rendering during inference, which it’s a challenge for neural
network-based radiance field methods.

9 ABLATION STUDY
9.1 Number of Key Frames
We choose tanabata scene from ExBluRF [Lee et al. 2023b] to evaluate the effect of the number
of interpolation sampling keyframes within the shutter time. As depicted in Fig. 4, the error bar
shows the image deblurring quantitative of the scene and standard deviation across different input
images. The reconstruction quality shows a gradual improvement, accompanied by a consistent
decline in the standard deviation as the number of keyframes increases, until reaching a point of
stabilization. However, the inclusion of more keyframes requires rendering additional intermediate
results during the training process, exerting a significant influence on training performance. To
enhance training performance without compromising reconstruction quality, we set the default
number of keyframes to 31 for our experiment.
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Fig. 4. The effect of the number of keyframes. The result demonstrates that the quality saturates as the
number of keyframes increases.

Table 6. Quantitative comparison of image deblurring of different camera motion trajectory repre-
sentations.

pool wine
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Linear 29.992 0.845 0.163 16.81 0.459 0.426
Cubic Spline 29.993 0.846 0.159 15.793 0.377 0.389
Bézier 30.043 0.837 0.234 27.628 0.874 0.183

9.2 Representation of Camera Motion Trajectory
We evaluate the effect of the representation of camera motion trajectory within the shutter time.
We choose pool and wine scenes from ExBluRF [Lee et al. 2023b] which represent low-level and
high-level motion blur to evaluate image deblurring quantitative respectively shown in Tab.6. For
the low-level motion blur scene (i.e. pool), the camera only has small movements within camera
exposure. Therefore, linear interpolation is enough and the quality is close to the higher-order curve.
However, for the high-level motion blur scene (i.e. wine), the camera may move fast within camera
exposure, and the motion trajectory could be complex. At this time, simple curve interpolation
might not be enough, while high-order Bézier curves work well. Note that higher higher-order
curve requires more control points, which means more keyframe samples and learnable parameters
are needed, leading to longer training time. Therefore, we should choose different trajectory
modeling strategies based on the blurriness level of the input images to achieve a balance between
performance and quality.
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10 CONCLUSION
In this paper, we proposed Deblur-GS, a camera motion deblurring method for 3D Gaussian
scene representation. Our approach models camera motion blur through a 6-DOF camera motion
trajectory, and we validate that the proposed model yields a sharp 3D radiance field when converged
to the input images. Using 3D Gaussian representation, our method outperforms existing deblurring
approaches both on synthetic and real datasets, demonstrating superior performance with lower
memory cost, reduced training iterations, and faster inference speed.
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