

Differential Geometry of Curves

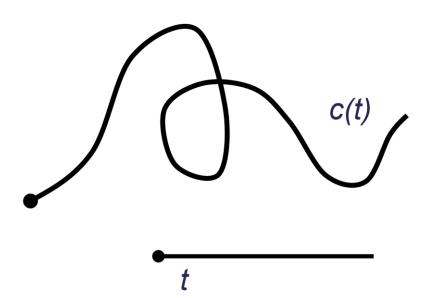
陈仁杰

中国科学技术大学

Parametric Curves

• Parametric Curves:

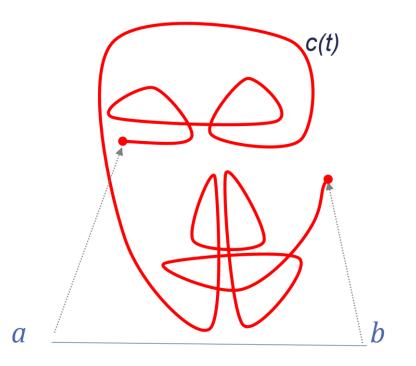
- Think of a curve *c* as the path of a moving particle
- Not always enough to know where a particle went we also want to know when it got there $\rightarrow c(t)$
- Parameter *t* is often thought of as time



Parametric Curves

• Parametric Curves:

• A parameterization of class $C^k (k \ge 1)$ of a curve in \mathbb{R}^n is a smooth map $c: I = [a, b] \subset \mathbb{R} \mapsto \mathbb{R}^n$, where c is of class C^k



Parametric Curves

• Parametric Curves:

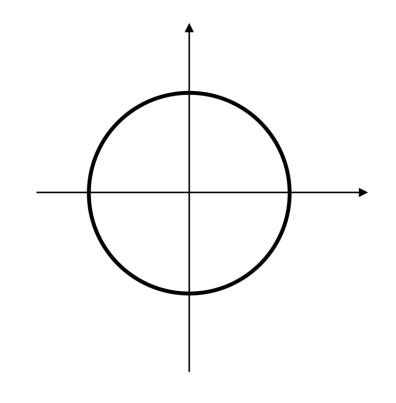
- The image set c(I) is called the *trace* of the curve
 - Different parameterizations can have the same trace.
- A point in the trace, which corresponds to more than one parameter value *t*, is called *self-intersection* of the curve

Parametric Curves: Examples

- The *positive* x-axis
 - $c(t) = (t, 0), t \in (0, \infty)$
 - $c(t) = (e^t, 0), t \in \mathbb{R}$

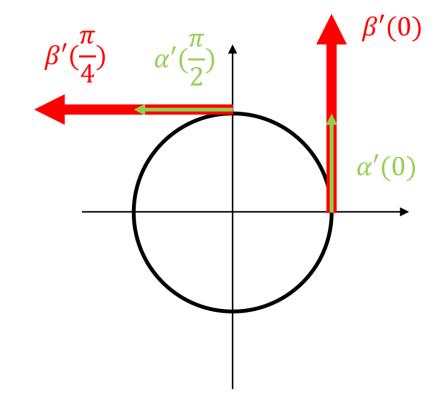
Circle

- $c(t) = (\cos t, \sin t), \quad t \in [0, 2\pi]$
- $c(t) = (\cos 2t, \sin 2t), t \in [0, \pi]$
- $c(t) = (\cos t, \sin t), \quad t \in \mathbb{R}$



The velocity vector

- The derivative c'(t) is called the velocity vector to the curve c at time t
 - c'(t) gives the direction of the movement
 - |c'(t)| gives the speed
- Example
 - $\alpha(t) = (\cos t, \sin t), \qquad t \in [0, 2\pi]$
 - $\beta(t) = (\cos 2t, \sin 2t), \quad t \in [0, \pi]$



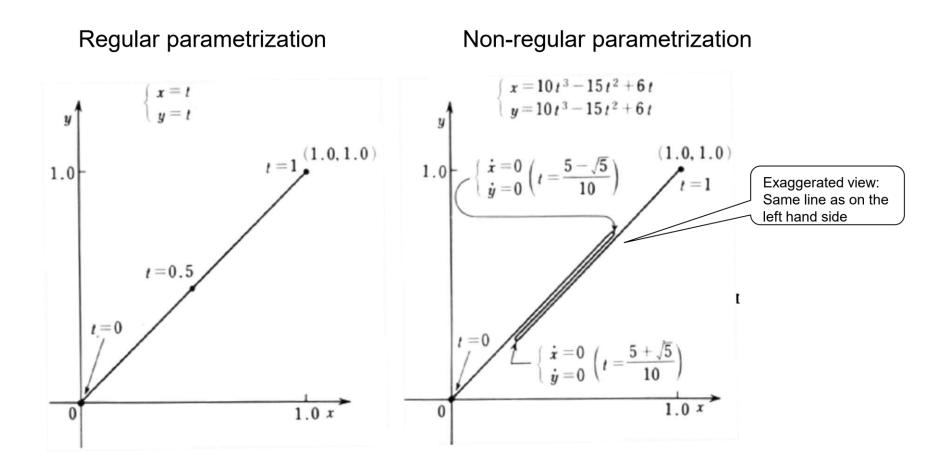
Regular parametric curves

Regular parametrization

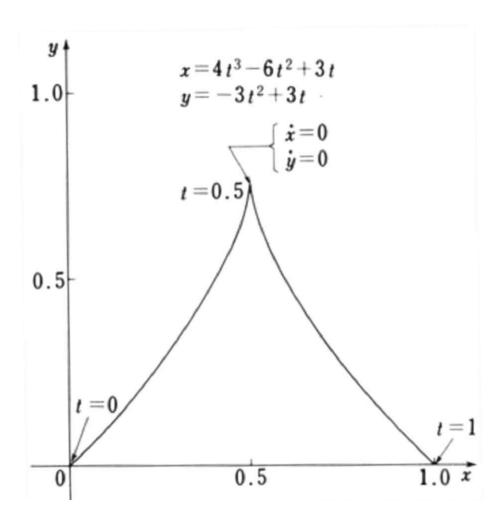
- A parameterization is called *regular* if $c'(t) \neq 0$ for all t
- A point at which a curve is regular is called an *ordinary* point
- A point at which a curve is non-regular is called an *singular* point

Examples: regularity

Examples: issues with non-regular parameterization

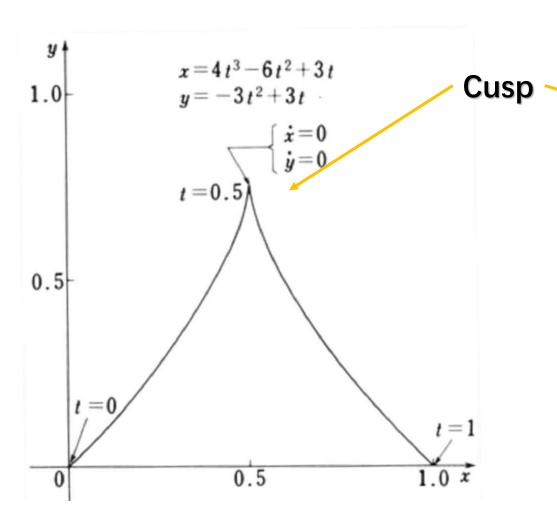


Examples: cusps



Singularities can be desired design features

Examples: cusps



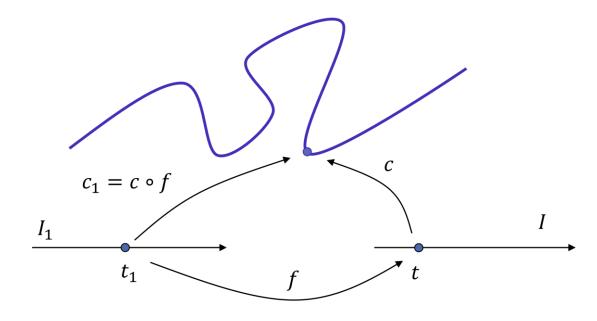
Singularities can be desired design features

Change of parameterization

 Given a smooth regular parametrization, an allowable change of parameter is any real smooth (differentiable) function

 $f: I_1 \rightarrow I$ such that $f' \neq 0$ on I_1

• It is orientation preserving when f' > 0



Change of parameterization

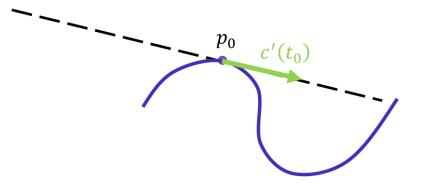
Parameter Transformations:

- We can regard a *regular curve* as a collection of regular parameterizations, any two of which are reparameterizations of each other (equivalence class)
- We are interested in properties that are invariant under parameter transformations

• Tangent vector:

• The tangent line to a regular curve c(t) at $p_0 = c(t_0)$ can be defined as points p which satisfy $p - p_0 \parallel c'_0$, where $c'_0 = c'(t_0)$

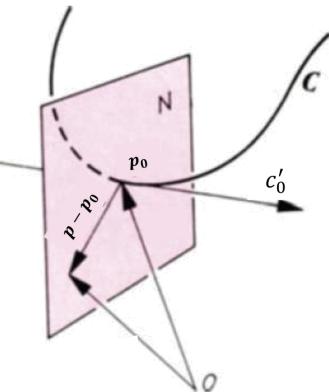
• The normalized vector
$$t = \frac{c'}{|c'|}$$
 is called the tangent vector



• The normal plane:

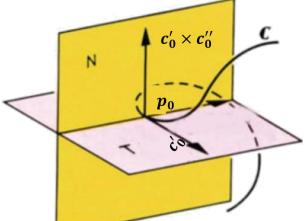
- The normal plane can be obtained as points p whose coordinates satisfy $p-p_0 \perp c_0'$

$$\Leftrightarrow (p-p_0)\cdot c_0'=0$$



• Osculating plane: 密切平面

- Assume the curve c(t) is not a straight line. Any three arbitrary noncollinear points p_1, p_2, p_3 determine a plane
- If p_1, p_2, p_3 tend to the same points p_0 of c, then their plane converges to a plane called the osculating plane T of c at p_0
- The osculating plane is well defined if the first two derivatives c'_0 and c''_0 at p_0 are linearly independent and is give as: $(c'_0 \times c''_0) \cdot (p - p_0) = 0$



Observe the distance between $P(t_0 + \Delta t)$ and a given plane passing through $P(t_0)$ with normal vector a

$$a \cdot \left(P(t_0 + \Delta t) - P(t_0)\right) = a \cdot \left(\dot{P}(t_0)\Delta t + \frac{\ddot{P}(t_0)}{2!}\Delta t^2 + \cdots\right)$$
The distance is minimal when

Unit normal vector

 $\boldsymbol{a} \cdot (\boldsymbol{P}(t_0 + \Delta t) - \boldsymbol{P}(t_0))$

$$a \cdot \dot{P}(t_0) = 0, a \cdot \ddot{P}(t_0) = 0$$

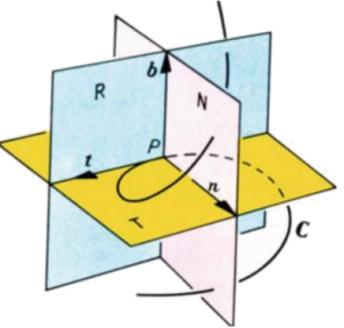
That is when the plane is osculating

 \rightarrow The osculating plane is the plane that best fits the curve at $P(t_0)$

• The rectifying plane: 从切平面

• The plane normal to both, the osculating plane and the normal plane, is called the rectifying plane R and can be obtained as points p whose coordinates satisfy

$$\left(c_0'\times (c_0'\times c_0'')\right)\cdot (p-p_0)=0$$



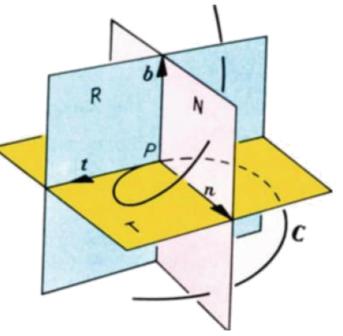
Normals: any vector in the normal plane is normal to the curve, in particular:

• The normal n lying in the osculating plane is called the principal normal at p_0 .

It has a direction $(c'_0 \times c''_0) \times c'_0$

• The normal *b* lying in the rectifying plane is called the binormal. 副法向

It has a direction $c'_0 \times c''_0$



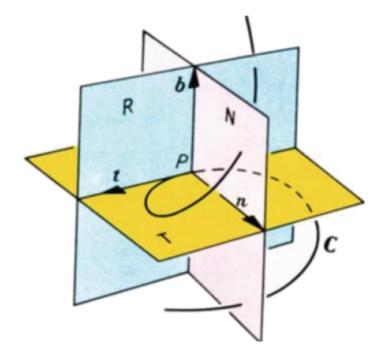
The Frenet frame

We can define a local coordinates system on the curve by three vectors

• The tangent
$$t = \frac{c'}{\|c'_0\|}$$

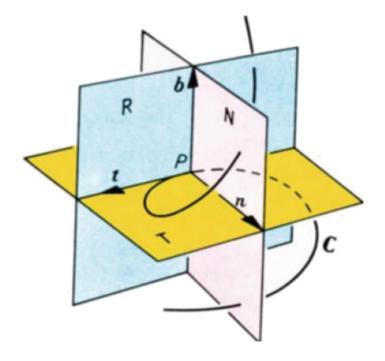
• The binormal
$$b = \frac{c'_0 \times c''_0}{\|c'_0 \times c''_0\|}$$

• The principal normal $n = b \times t$



The Frenet frame and associated planes

- The tangent $t = \frac{c'}{\|c'_0\|}$ • the normal plane $(p - p_0) \cdot t = 0$
- The binormal $b = \frac{c'_0 \times c''_0}{\|c'_0 \times c''_0\|}$
 - the osculating plane $(p p_0) \cdot \mathbf{b} = 0$
- The principal normal $n = b \times t$
 - the rectifying plane $(p p_0) \cdot n = 0$

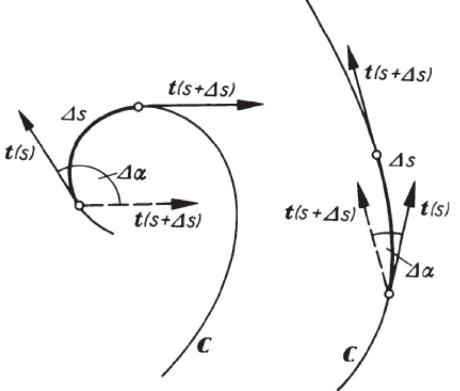


Curvature

- Common conceptions of curvature
 - Measures bending of a curve
 - A straight line does not bend \rightarrow 0 curvature
 - A circle has constant bending \rightarrow constant curvature

Euler's heuristic approach for planar curves

Variation of the tangent angle: how much does the curve differ from a straight line



Curvature for regular parameterization

The curvature is denoted by κ and defined as

$$\kappa(t) = \frac{\|c'(t) \times c''(t)\|}{\|c'(t)\|^3}$$

Examples:

• Consider the circle $c(t) = (r \cos t, r \sin t, 0)$

The *curvature* is given by

$$\kappa(t) = \frac{\|(-r\sin t, r\cos t, 0) \times (-r\cos t, -r\sin t, 0)\|}{r^3} = \frac{\|(0, 0, r^2)\|}{r^3} = \frac{1}{r}$$

• Consider the helix $c(t) = (r \cos t, r \sin t, at)$, the *curvature* is

$$\kappa(t) = \frac{r}{r^2 + a^2}$$

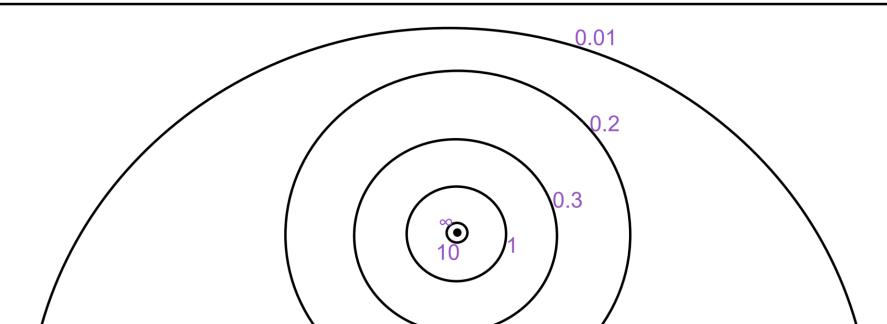
Special case: planar curves

- For a regular planar curve c(t) = (x(t), y(t)) $\kappa(t) = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$
- Sometimes we talk about signed curvature, and then curvature can be allowed to be signed (negative, zero, or positive)

$$\kappa(t) = \frac{x'y'' - x''y'}{\left(x'^2 + {y'}^2\right)^{\frac{3}{2}}}$$

Curvature of circles

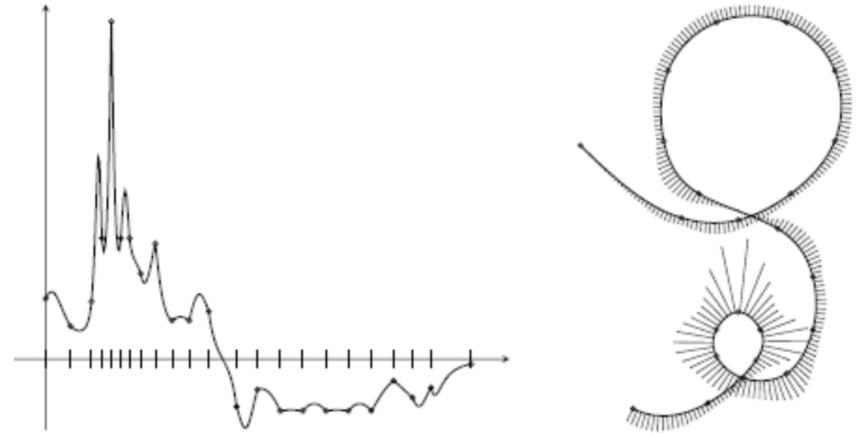
- Curvature of a circle is constant, $\kappa \equiv \frac{1}{r} (r = radius)$
- Accordingly: define radius of curvature as $\frac{1}{r}$



 $\mathbf{0}$

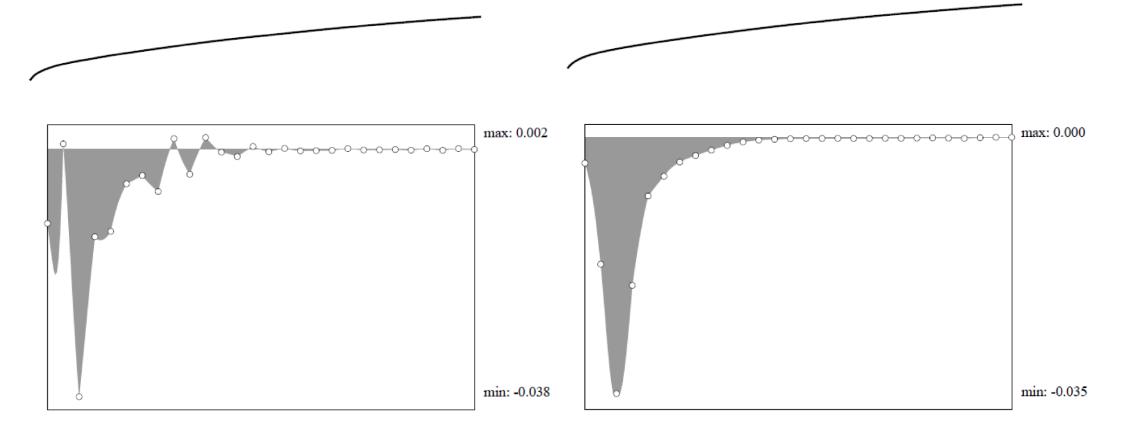
Curvature in practice

Most of commercial package allow inspecting the quality of the curvature

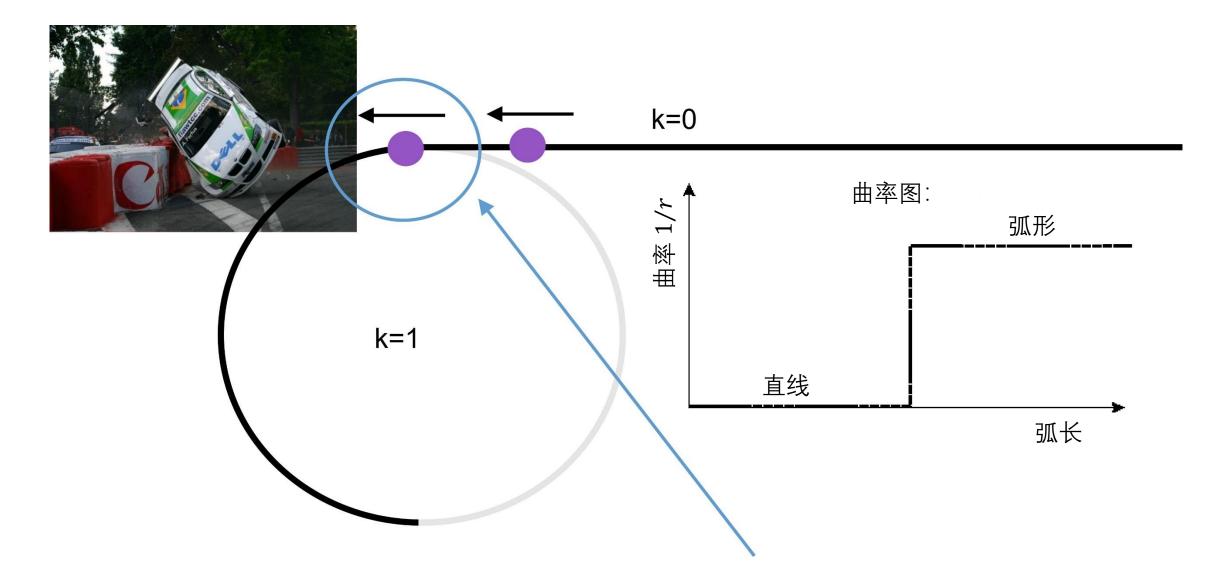


Curvature in practice

Most commercial package allow checking the quality of the curvature even meticulously!



Curvature and Road Construction



Clothoide, Euler Spiral 羊角螺线



Torsion for regular parameterization

Definition

- The torsion au measures the variation of the binormal vector
- (deviation of the curve from its projection on the osculating plane, can be regarded as how far is the curve is from being a planar curve) and is given by

$$\tau(t) = \frac{(c' \times c'') \cdot c'''}{\|c' \times c''\|^2}$$

Torsion

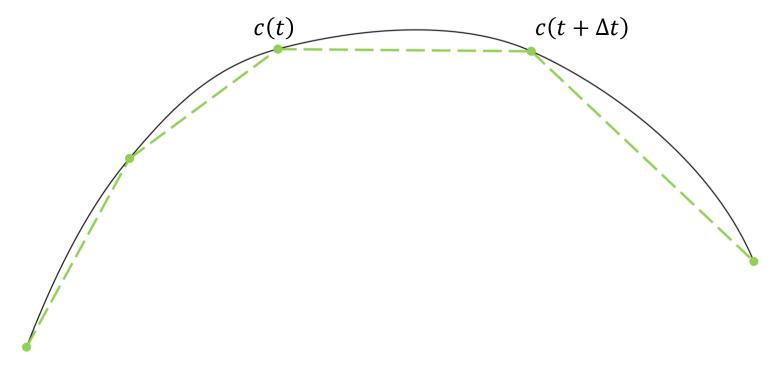
Examples:

- Torsion for a planar curve
- Torsion for a quadratic curve

Measuring lengths on curves

The arc length of a curve

 Can be regarded as the limit of the sum of infinitesimal segments along the curve



Measuring lengths on curves

The arc length of a curve

• The arc length of a regular curve C is defined as :

$$\text{length}_{c} = \int_{a}^{b} \|c'\| dt$$

 Independent of the parameterization (to prove this, use integration by substitution)

Measuring lengths on curves

Curve arc length matters in practice (e.g., cable routing problems)



Arc-length parametrized curves

Arc length parametrization

 Consider the portion of c(t) spanned from 0 to t, the length s of this arc is a function of t:

$$s(t) = \int_0^t \|c'(u)\|dt$$

• Since $\frac{ds}{dt} = ||c'(u)|| > 0$ (why?) $\rightarrow s$ can be introduced as a new parameterization

Arc length parametrization

Consider the portion of c(t) spanned from 0 to t, the length s of this arc is a function of t:

$$s(t) = \int_0^t \|c'(u)\|dt$$

• Since $\frac{ds}{dt} = ||c'(u)|| > 0$ (why?) $\rightarrow s$ can be introduced as a new parameterization

• We have
$$c'(s) = \frac{dc}{ds} = \frac{dc/dt}{ds/dt} \Rightarrow ||c'(s)|| = 1$$

 c(s) is called an arc-length (or unit-speed) parametrized curve, the parameter s is called the arc length of c or the natural parameter

Reparameterization by arc length

- Arc-length (or unit-speed) parameterization:
 - Any regular curve admits an arc-length parameterization
 - This does not mean that the arc-length parameterization can be computed

Examples

$$s(t) = \int_0^t \|c'(u)\|dt$$

• Find an arc-length parameterization for the Helix: $\begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}$

Examples

• Find an arc-length parameterization for the Helix:
$$\begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}$$
$$s(t) = \int_0^t \sqrt{(-\sin u)^2 + (\cos u)^2 + 1^2} du = t\sqrt{2} \Rightarrow t = \frac{s}{\sqrt{2}}$$
The arc-length parameterized Helix:
$$\begin{pmatrix} \cos \frac{s}{\sqrt{2}} \\ \sin \frac{s}{\sqrt{2}} \\ \frac{s}{\sqrt{2}} \end{pmatrix}$$

$$s(t) = \int_0^t \|c'(u)\|dt$$

$s(t) = \int_0^t \|c'(u)\|dt$

Examples

• How about the ellipse
$$\alpha(t) = \begin{pmatrix} 2\cos t \\ \sin t \\ 0 \end{pmatrix}$$
?

$s(t) = \int_0^t \|c'(u)\|dt$

Examples

• How about the ellipse
$$\alpha(t) = \begin{pmatrix} 2\cos t\\ \sin t\\ 0 \end{pmatrix}$$
?
$$s(t) = \int_0^t \sqrt{4(-\sin u)^2 + (\cos u)^2} du = \int_0^t \sqrt{4 - 3\cos^2 u} du$$

Does not admit any closed form antiderivative

Examples

• How about
$$\alpha(t) = \begin{pmatrix} t \\ \frac{t^2}{2} \\ 0 \end{pmatrix}?$$

$$s(t) = \int_0^t \|c'(u)\|dt$$

$$s(t) = \int_0^t \|c'(u)\|dt$$

Examples

• How about
$$\alpha(t) = \begin{pmatrix} t \\ \frac{t^2}{2} \\ 0 \end{pmatrix}$$
?
$$s(t) = \int_0^t \sqrt{1 + u^2} du = t\sqrt{1 + t^2} + \ln\left(t + \sqrt{1 + t^2}\right)$$

• No straightforward way to write *t* as a function of s!

Geometric consequences of Arc length parameterization

• Since ||c'(u)|| = 1

Geometric consequences of Arc length parameterization

- Since ||c'(u)|| = 1, by noting that $c' \cdot c' = 1$ and taking the derivative, we have $c' \cdot c'' = 0$
- c'' is perpendicular to c' (both lives on the osculating plane)
- Therefore c'' is a direction vector of the principal normal (provided that $c'' \neq 0$)

$$\Rightarrow n = \frac{c^{\prime\prime}}{\|c^{\prime\prime}\|}$$

Curvature again

• The curvature of an arc-length parametrized curve (unit speed curve) c(t) simplifies to

$$\kappa = \|c''(u)\|$$

Further mathematical Formulations: Frenet Curves

Frenet Curves

- Frenet curves
 - A *Frenet curve* is an arc-length parametrized curve c in \mathbb{R}^n such that $c'(s), c''(s), \dots, c^{n-1}(s)$ are linearly independent

Frenet Curves

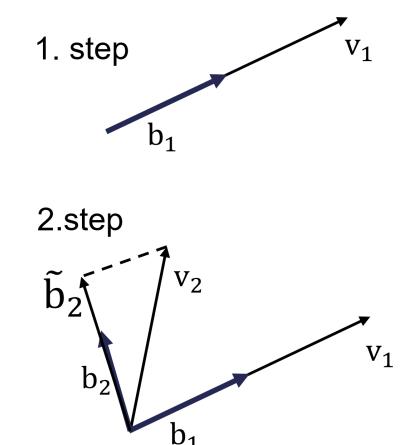
- Frenet curves
 - A *Frenet curve* is an arc-length parametrized curve c in \mathbb{R}^n such that $c'(s), c''(s), \dots, c^{n-1}(s)$ are linearly independent
- Frenet frame
 - Every Frenet curve has a unique Frenet frame $e_1(s), e_2(s), \dots, e_n(s)$ that satisfies
 - $e_1(s), e_2(s), \dots, e_n(s)$ is orthonormal and positively oriented

Frenet Curves

- Frenet curves
 - A *Frenet curve* is an arc-length parametrized curve c in \mathbb{R}^n such that $c'(s), c''(s), \dots, c^{n-1}(s)$ are linearly independent
- Frenet frame
 - Every Frenet curve has a unique Frenet frame $e_1(s), e_2(s), \dots, e_n(s)$ that satisfies
 - $e_1(s), e_2(s), \dots, e_n(s)$ is orthonormal and positively oriented
 - Apply the Gram-Schmidt process to $\{c', c'', ..., c^n\}$

Construction of Orthonormal Bases: Gram-Schmidt Process

- Input: Linear independent set $\{v_1, v_2, \dots, v_n\}$
- Output: Orthogonal set $\{b_1, b_2, \dots, b_n\}$
 - Set $b_1 = \frac{v_1}{\|v_1\|}$
 - For k = 2, ..., n
 - $\widetilde{b_k} = v_k \sum_{i=1}^{k-1} \langle v_k, b_i \rangle \ b_i$ • $b_k = \frac{\widetilde{b_k}}{\|\widetilde{b_k}\|}$



Planar Curves

The Frenet Frame of an arc-length parametrized planar curve

Tangent vectorNormal vector $e_1(s) = c'(s)$ $e_2(s) = R^{90^\circ}e_1(s)$

Frame equation

$$\begin{pmatrix} e_1(s) \\ e_2(s) \end{pmatrix}' = \begin{pmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{pmatrix} \begin{pmatrix} e_1(s) \\ e_2(s) \end{pmatrix}$$

Signed Curvature

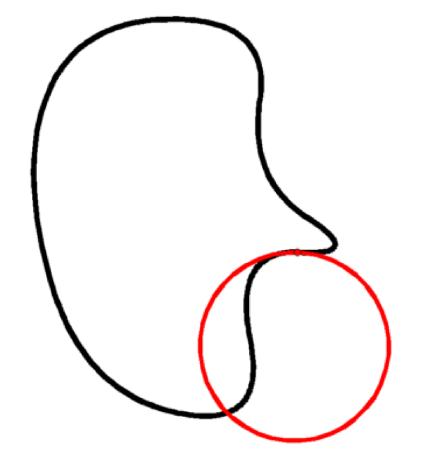
 $\kappa(s) = \langle e'_1(s), e_2(s) \rangle$ is called the signed curvature of the curve

Osculating circle

Osculating circle

• Radius:
$$1/\kappa$$

• Center: $c(s) + \frac{1}{\kappa}e_2(s)$



Properties

- Rigid motions
 - Rigid motion: $x \rightarrow Ax + b$ with orthogonal A (in other words: affine maps that preserve distances)
 - Orientation preserving (no mirroring) if $\det A = +1$
 - Mirroring leads to $\det A = -1$
- Invariance under rigid motions for planar curves
 - Curvature is invariant under rigid motion
 - Absolute value is invariant
 - Signed value is invariant for orientation preserving rigid motion
- Rigidity of planar curves
 - Two Frenet curves with identical signed curvature function differ only by an orientation preserving rigid motion

Fundamental Theorem

Fundamental theorem for planar curves

- Let $\kappa: (a, b) \mapsto \mathbb{R}$ be a smooth function. For some $s_0 \in (a, b)$, suppose we are given a point p_0 and two orthonormal vectors t_0 and n_0 . Then there exist a unique Frenet curve $c: (a, b) \mapsto \mathbb{R}^2$ such that
 - $c(s_0) = p_0$
 - $e_1(s_0) = t_0$
 - $e_2(s_0) = n_0$
 - The curvature of c equals the given function κ
- In other words: for every smooth function there is a unique (up to rigid motion) curve that has this function as its curvature

Arc-length Derivative

- Arc-length parameterization
 - Finding an arc-length parameterization for a parameterized curve is usually difficult
 - Still one can compute the Frenet frame and its derivatives. For this we define the so called arc-length derivative
- Arc-length derivative
 - For a parameterized curve $c: [a, b] \mapsto \mathbb{R}^n$, we define the *arc-length derivative* of any differentiable function $f: [a, b] \mapsto \mathbb{R}$ as

$$f'(t) = \frac{1}{\|c'(t)\|} f'(t)$$

Compute the signed curvature

- Computing the Frenet frame
 - For $c: [a, b] \mapsto \mathbb{R}^2$, the Frenet frame at c(t) can be computed as (using arc length derivative)

$$e_{1}(t) = c'(t) = \frac{c'(t)}{\|c'(t)\|}$$
$$e_{2}(t) = R^{90^{\circ}} e_{1}(t)$$

- Computing the signed curvature
 - The signed curvature is given by

$$\kappa(t) = \langle e_1'(t), e_2(t) \rangle = \frac{\langle c''(t), R^{90^{\circ}} c'(t) \rangle}{\|c'(t)\|^3}$$

Space Curves

- Frenet frame of arc-length parametrized space curves
 - Frenet frame of a Frenet curve in \mathbb{R}^3
 - Tangent vector

$$e_1(s) = c'(s)$$

Normal vector

$$e_2(s) = \frac{1}{\|c''(t)\|} c''(t)$$

• Binormal vector

$$e_3(s) = e_1(s) \times e_2(s)$$

Frenet Frame of Space Curves

• Frenet–Serret equations

$$\begin{pmatrix} e_1(s) \\ e_2(s) \\ e_3(s) \end{pmatrix}' = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} e_1(s) \\ e_2(s) \\ e_3(s) \end{pmatrix}$$

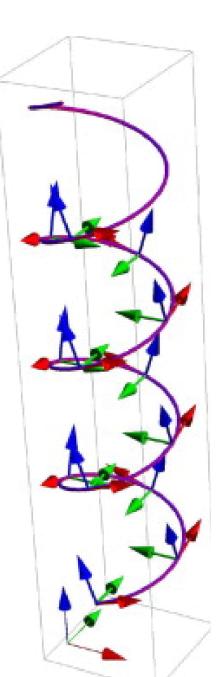
• The signed curvature still is $\kappa(s) = \langle e'_1(s), e_2(s) \rangle$

Frenet Frame of Space Curves

Frenet–Serret equations

$$\begin{pmatrix} e_1(s) \\ e_2(s) \\ e_3(s) \end{pmatrix}' = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} e_1(s) \\ e_2(s) \\ e_3(s) \end{pmatrix}'$$

• The torsion $\tau(s) = \langle e'_2(s), e_3(s) \rangle$ measures how the curve bends out of the plane spanned by e_1 and e_2



Frenet Frame of Space Curves

• Frenet equations for curves in \mathbb{R}^n

$$\begin{pmatrix} e_1(s) \\ e_2(s) \\ \dots \\ e_n(s) \end{pmatrix}' = \begin{pmatrix} 0 & \kappa_1(s) & 0 & \dots & 0 \\ -\kappa_1(s) & 0 & \kappa_2(s) & \dots & 0 \\ 0 & -\kappa_2(s) & 0 & \dots & \\ & & & & & \\ 0 & \dots & & -\kappa_{n-1}(s) & 0 \end{pmatrix} \begin{pmatrix} e_1(s) \\ e_2(s) \\ \dots \\ e_n(s) \end{pmatrix}$$

• The function $\kappa_i(s)$ are called the i^{th} Frenet curvatures

Summary of relations

• For <u>regular</u> curves:

• The tangent
$$t = \frac{c'}{\|c'\|}$$
, the normal plane $(p - p_0) \cdot t = 0$

• The binormal
$$\mathbf{b} = \frac{c' \times c''}{\|c' \times c''\|}$$
, the osculating plane $(p - p_0) \cdot \mathbf{b} = 0$

• The principal normal $n = b \times t$, the rectifying plane $(p - p_0) \cdot n = 0$

• The curvature
$$\kappa(t) = \frac{c' \times c''}{\|c'\|^3}$$

• The torsion
$$\tau(t) = \frac{(c' \times c'') \cdot c'''}{\|c' \times c''\|^2}$$

Summary of relations

For an <u>arc-length parameterized</u> (unit speed) curves c(s):

- The tangent t = c'
- The binormal $b = t \times n$
- The principal normal $n = \frac{t'}{\|t'\|} = \frac{c''}{\|c''\|}$
- The curvature $\kappa(t) = ||t'|| = ||c''||$
- The signed curvature $\kappa(s) = t' = c''$
- The torsion $\tau(t) = -b' \cdot n$

Special case: planar curves

- For a regular planar curve c(t) = (x(t), y(t)), it is defined as $\kappa(t) = \frac{|x'y'' x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$
- Sometimes we talk about signed curvature, and then curvature can be allowed to be signed (negative, zero, or positive)

$$\kappa(t) = \frac{x'y'' - x''y'}{\left(x'^2 + {y'}^2\right)^{\frac{3}{2}}}$$