
Bezier Curves

陈仁杰

中国科学技术大学

计算机辅助几何设计
2021秋学期

Bezier curves

• Bezier curves/splines developed by
• Paul de Casteljau at Citroen (1959)

• Pierre Bezier at Renault (1963)

for free-form parts in automotive design

Bezier curves

• Today: Standard tool for 2D curve editing

• Cubic 2D Bezier curves are everywhere:
• Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, …

• PDF, Truetype (quadratic curves), Windows GDI, …

• Widely used in 3D curve & surface modeling as well

Curve representation

• The implicit curve form 𝑓 𝑥, 𝑦 = 0 suffers
from several limitations:

Curve representation

• The implicit curve form 𝑓 𝑥, 𝑦 = 0 suffers
from several limitations:

• Multiple values for the same 𝑥-coordinates

• Undefined derivative
𝑑𝑦

𝑑𝑥
(see blue cross)

• Not invariant w.r.t axes transformations

Parametric representation

• Remedy: parametric representation 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

• Easy evaluations

• The parameter 𝑡 can be interpreted as time

• The curve can be interpreted as the path traced by a moving particle

Modeling with the power basis, …

• Example of a parabola: 𝒇 𝑡 = 𝒂𝑡2 + 𝒃𝑡 + 𝒄

𝒇 𝑡 =
1
1

𝑡2 +
−2
0

𝑡 +
1
0

Modeling with the power basis, …
no thanks!
• Examples of a parabola: 𝒇 𝑡 = 𝒂𝑡2 + 𝒃𝑡 + 𝒄: the coefficients of

the power basis lack intuitive geometric meaning

Back to the drawing board

• A point on a parametric line

𝒃𝟏

𝒃𝟎

𝒃𝟎
𝟏

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

Back to the drawing board

• Another point on a second parametric line

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

Back to the drawing board

• A third point on the line defined by the first two points

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 𝒃𝟎

𝟏 + 𝑡𝒃𝟏
𝟏

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

Back to the drawing board

• And then simplify…

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

𝒃𝟎
𝟐 = 1 − 𝑡 𝒃𝟎

𝟏 + 𝑡𝒃𝟏
𝟏

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏 + 𝑡 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 2𝒃𝟎 + 2𝑡 1 − 𝑡 𝒃𝟏 + 𝑡2𝒃𝟐

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

Back to the drawing board

• We obtained another description of
parabolic curves

• The coefficients 𝒃𝟎, 𝒃𝟏, 𝒃𝟐 have a
geometric meaning

𝒃𝟎
𝟐 = 1 − 𝑡 2𝒃𝟎 + 2𝑡 1 − 𝑡 𝒃𝟏 + 𝑡2𝒃𝟐

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

Example re-visited

• Let’s rewrite our initial parabolic curve example in the new basis

𝒇 𝑡 =
1
1

𝑡2 +
−2
0

𝑡 +
1
0

𝒇 𝑡 =
1
0

1 − 𝑡 2 +
0
0

2𝑡 1 − 𝑡 +
0
1

𝑡2

Example re-visited

• The coefficient have a geometric meaning

• More intuitive for curve manipulation

Another example

𝒃0 =
0
1

, 𝒃1 =
1
1

, 𝒃2 =
0
2

Going further

• Cubic approximation

• Given 4 points: 𝒑0
0 𝑡 = 𝒑0, 𝒑1

0 𝑡 = 𝒑1, 𝒑2
0 𝑡 = 𝒑2, 𝒑3

0 𝑡 = 𝒑3

• First iteration

• 2nd iteration

• Curve
𝒄 𝑡 = 1 − 𝑡 3𝒑0 + 3𝑡 1 − 𝑡 2𝒑1 + 3𝑡2 1 − 𝑡 𝒑2 + 𝑡3𝒑3

𝒑0
2 = 1 − 𝑡 2𝒑0 + 2𝑡 1 − 𝑡 𝒑1 + 𝑡2𝒑2

𝒑1
2 = 1 − 𝑡 2𝒑1 + 2𝑡 1 − 𝑡 𝒑2 + 𝑡2𝒑3

𝒑0
1 = 1 − 𝑡 𝒑0 + 𝑡𝒑1

𝒑1
1 = 1 − 𝑡 𝒑1 + 𝑡𝒑2

𝒑2
1 = 1 − 𝑡 𝒑2 + 𝑡𝒑3

Throughout these examples, we just re-invented a primitive version
of the de Casteljau algorithm

Now let’s examine it more closely …

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• Algorithm description
• Input: points 𝒃0, 𝒃1, …𝒃𝑛 ∈ ℝ3

• Output: curve 𝒙 𝑡 , 𝑡 ∈ 0,1

• Geometric construction of the points 𝒙 𝑡 for given 𝑡:

𝒃𝑖
0 𝑡 = 𝒃𝑖 , 𝑖 = 0,… , 𝑛

𝒃𝑖
𝑟 𝑡 = 1 − 𝑡 𝒃𝑖

𝑟−1 𝑡 + 𝑡 𝒃𝑖+1
𝑟−1 𝑡

𝑟 = 1,… , 𝑛 𝑖 = 0,… , 𝑛 − 𝑟

• Then 𝒃0
𝑛 𝑡 is the searched curve point 𝒙 𝑡 at the parameter value 𝑡

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

𝑡

𝑡

𝒃0
2

𝒃1
2

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

𝑡

𝑡

𝒃0
2

𝒃1
2 𝑡 𝒃0

3
= 𝑥(𝑡)

De Casteljau scheme

De Casteljau algorithm

• The intermediate coefficients 𝒃𝑖
𝑟 𝑡 can be written in a triangular matrix: the

de Casteljau scheme:

• 𝒃0 = 𝒃0
0

• 𝒃1 = 𝒃1
0 𝒃0

1

• 𝒃2 = 𝒃2
0 𝒃1

1 𝒃0
2

• 𝒃3 = 𝒃3
0 𝒃2

1 𝒃1
2 𝒃0

3

• ……………………

• 𝒃𝑛−1 = 𝒃𝑛−1
0 𝒃𝑛−2

1 … 𝒃0
𝑛−1

• 𝒃𝑛 = 𝒃𝑛
0 𝒃𝑛−1

1 … 𝒃1
𝑛−1 𝒃0

𝑛 = 𝑥 𝑡

De Casteljau algorithm

• Algorithm:

• for r=1..n

• for i=0..n-r

• 𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1
+ 𝑡 𝒃𝑖+1

𝑟−1

• end

• end

• return 𝒃0
𝑛

The whole algorithm consists only of
repeated linear interpolations.

De Casteljau algorithm: Properties

• The polygon consisting of the points 𝒃𝟎, … , 𝒃𝒏 is called Bezier polygon
(control polygon)

• The points 𝒃𝒊 are called Bezier points (control points)

• The curve defined by the Bezier points 𝒃𝟎, … , 𝒃𝒏 and the de Casteljau
algorithm is called Bezier curve

• The de Casteljau algorithm is numerically stable, since only convex
combinations are applied.

• Complexity of the de Casteljau algorithm
• 𝑂 𝑛2 time
• 𝑂 𝑛 memory
• with 𝑛 being the number of Bezier points

De Casteljau algorithm: Properties

• Properties of Bezier curves:
• Given: Bezier points 𝒃0, … , 𝒃𝑛

Bezier curve 𝒙 𝑡

• Bezier curve is polynomial curve of degree 𝑛

• End points interpolation: 𝒙 0 = 𝒃0, 𝒙 1 = 𝒃𝑛. The remaining Bezier
points are only approximated in general

• Convex hull property:

Bezier curve is completely inside the convex hull of its Bezier polygon

De Casteljau algorithm: Properties

• Variation diminishing
• No line intersects the Bezier curve more often than its Bezier polygon

• Influence of Bezier points: global but pseudo-local
• Global: moving a Bezier points changes the whole curve progression

• Pseudo-local: 𝒃𝑖 has its maximal influence on 𝑥 𝑡 at 𝑡 =
𝑖

𝑛

• Affine invariance:
• Bezier curve and Bezier polygon are invariant under affine

transformations

• Invariance under affine parameter transformations

De Casteljau algorithm: Properties

• Symmetry
• The following two Bezier curves coincide, they are only traversed in

opposite directions:

𝒙 𝑡 = 𝒃0, … , 𝒃𝑛 𝒙′ 𝑡 = 𝒃𝑛, … 𝒃0

• Linear Precision:
• Bezier curve is line segment, if 𝒃0, … , 𝒃𝑛 are colinear

• Invariance under barycentric combinations

Recap

de Casteljau algorithm

Bezier Curves
Towards a polynomial description

Bezier Curves
Towards a polynomial description

𝑥 𝑡 =

𝑖=0

𝑛

𝐵𝑖
𝑛 𝑡 ⋅ 𝑏𝑖

Polynomial description of Bezier curves

• The same problem as before:
• Given: 𝑛 + 1 control points 𝒃0, … , 𝒃𝑛
• Wanted: Bezier curve 𝒙 𝑡 with 𝑡 ∈ 0,1

• Now with an algebraic approach using basis functions

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

• Local control (or at least semi-local)
• Basis functions with compact support

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

• Local control (or at least semi-local)
• Basis functions with compact support

• Affine invariance:
• Appling an affine map 𝒙 → 𝐴𝒙 + 𝑏 on

• Control points

• Curve

Should have the same effect

• In particular: rotation, translation

• Otherwise: interactive curve editing very difficult

Desirable Properties

• Useful requirements for a basis:
• Convex hull property:

• The curve lays within the convex hull of its control points

• Avoids at least too weird oscillations

• Advantages
• Computational advantages (recursive intersection tests)

• More predictable behavior

Summary

• Useful properties
• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Curve basis function control points

𝒇 𝑡 =

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖

Notations

Affine Invariance

• Affine map: 𝒙 → 𝐴𝒙 + 𝒃

• Part I: Linear invariance – we get this automatically

• Linear approach: 𝒇 𝑡 = σ𝑖=1
𝑛 𝑏𝑖 𝑡 𝒑𝑖 = σ𝑖=1

𝑛 𝑏𝑖 𝑡

𝑝𝑖
𝑥

𝑝𝑖
𝑦

𝑝𝑖
𝑧

• Therefore: 𝐴 𝒇 𝑡 = 𝐴 σ𝑖=1
𝑛 𝑏𝑖 𝑡 𝒑𝑖 = σ𝑖=1

𝑛 𝑏𝑖 𝑡 𝐴𝒑𝑖

Affine Invariance

• Affine Invariance:
• Affine map: 𝒙 → 𝐴𝒙 + 𝒃

• Part II: Translational invariance

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖 + 𝒃 =

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖 +

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒃 = 𝒇 𝑡 +

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒃

• For translational invariance, the sum of the basis functions must be one everywhere
(for all parameter values 𝑡 that are used).

• This is called “partition of unity property”

• The 𝑏𝑖’s form an “affine combination” of the control points 𝒑𝑖
• This is very important for modeling

Convex Hull Property

• Convex combinations:
• A convex combination of a set of points 𝒑1, … , 𝒑𝑛 is any point of the form:

σ𝑖=1
𝑛 𝜆𝑖𝒑𝒊 with σ𝑖=1

𝑛 𝜆𝑖 = 1 and ∀𝑖 = 1…𝑛: 0 ≤ 𝜆𝑖 ≤ 1

• (Remark: 𝜆𝑖 ≤ 1 is redundant)

• The set of all admissible convex combinations forms the convex hull of the
point set
• Easy to see (exercise): The convex hull is the smallest set that contains all points

𝒑1, … , 𝒑𝑛 and every complete straight line between two elements of the set

Convex Hull Property

• Accordingly:
• If we have this property
∀𝑡 ∈ Ω:σ𝑖=1

𝑛 𝑏𝑖 𝑡 = 1 and ∀𝑡 ∈ Ω, ∀𝑖: 𝑏𝑖 𝑡 ≥ 0

the constructed curves / surfaces will be:
• Affine invariant (translations, linear maps)

• Be restricted to the convex hull of the control points

• Corollary: Curves will have linear precision
• All control points lie on a straight line

⇒ Curve is a straight line segment

• Surfaces with planar control points will be flat, too

Convex Hull Property

• Very useful property in practice
• Avoids at least the worst oscillations

• no escape from convex hull, unlike polynomial interpolation

• Linear precision property is intuitive (people expect this)

• Can be used for fast range checks
• Test for intersection with convex hull first, then the object

• Recursive intersection algorithms in conjunctions with subdivision rules (more on
this later)

Polynomial description of Bezier curves

• The same problem as before:
• Given: 𝑛 + 1 control points 𝒃0, … , 𝒃𝑛
• Wanted: Bezier curve 𝑥 𝑡 with 𝑡 ∈ 0,1

• Now with an algebraic approach using basis functions

• Need to define 𝑛 + 1 basis functions
• Such that this describes a Bezier curve:

𝐵0
𝑛 𝑡 , … , 𝐵𝑛

𝑛 𝑡 over 0,1

𝒙 𝑡 =

𝑖=0

𝑛

𝐵𝑖
𝑛 𝑡 ⋅ 𝒃𝑖

Bernstein Basis

• Let’s examine the Bernstein basis: 𝐵 = {𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛
}

• Bernstein basis of degree 𝑛:

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝐵𝑖−th basis function

degree

where the binomial coefficients are given by:

𝑛
𝑖

= ቐ

𝑛!

𝑛 − 𝑖 ! 𝑖!
for 0 ≤ 𝑖 ≤ 𝑛

0 otherwise

Binomial Coefficients and Theorem

𝑥 + 𝑦 𝑛 =

𝑖=0

𝑛
𝑛
𝑖

𝑥𝑖𝑦𝑛−𝑖

𝑛
𝑖

+
𝑛

𝑖 + 1
=

𝑛 + 1
𝑖 + 1

Examples: The first few

• The first three Bernstein bases:

• 𝐵0
0
≔ 1

• 𝐵0
1
≔ 1− 𝑡 𝐵1

1
≔ 𝑡

• 𝐵0
2
≔ 1− 𝑡 2 𝐵1

2
≔ 2𝑡 1 − 𝑡 𝐵2

2
≔ 𝑡2

• 𝐵0
3
≔ 1− 𝑡 3 𝐵1

3
≔ 3𝑡 1 − 𝑡 2 𝐵2

3
≔ 3𝑡2 1 − 𝑡 𝐵3

3
≔ 𝑡3

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

Examples: The first few

• 𝐵0
3
≔ 1− 𝑡 3

• 𝐵1
3
≔ 3𝑡 1 − 𝑡 2

• 𝐵2
3
≔ 3𝑡2 1 − 𝑡

• 𝐵3
3
≔ 𝑡3

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

𝐵0
0
≔ 1

𝐵0
1
≔ 1− 𝑡

𝐵1
1
≔ 𝑡

𝐵0
2
≔ 1− 𝑡 2

𝐵1
2
≔ 2𝑡 1 − 𝑡

𝐵2
2
≔ 𝑡2

Bernstein Basis

• Bezier curves use the Bernstein basis: 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛

• Bernstein basis of degree 𝑛:

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝐵𝑖−th basis function

degree

Bernstein Basis

• What about the desired properties?
• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Basis for polynomials of degree 𝑛

• Each basis function 𝐵𝑖
𝑛 has its maximum at 𝑡 =

𝑖

𝑛

Smoothness

Local control (semi-local)

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Partition of unity (binomial theorem)
1 = 1 − 𝑡 + 𝑡

𝑖=0

𝑛

𝐵𝑖
𝑛

𝑡 = 𝑡 + 1 − 𝑡
𝑛
= 1

Affine invariance Convex hull property

What about the desired properties?

• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Yes
To some extent
Yes
Yes

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Recursive computation

𝐵𝑖
𝑛 𝑡 ≔ 1 − 𝑡 𝐵𝑖

𝑛−1
𝑡 + 𝑡𝐵𝑖−1

𝑛−1
1 − 𝑡

with 𝐵0
0 𝑡 = 1, 𝐵𝑖

𝑛 𝑡 = 0 for 𝑖 ∉ 0…𝑛

• Symmetry
𝐵𝑖
𝑛 𝑡 = 𝐵𝑛−𝑖

𝑛 1 − 𝑡

• Non-negativity: 𝐵𝑖
𝑛

𝑡 ≥ 0 for 𝑡 ∈ [0. . 1]

𝑛 − 1
𝑖

+
𝑛 − 1
𝑖 − 1

=
𝑛
𝑖

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Non-negativity II

𝐵𝑖
𝑛 𝑡 > 0 for 0 < 𝑡 < 1

𝐵0
𝑛 0 = 1, 𝐵1

𝑛 0 = ⋯ = 𝐵𝑛
𝑛 0 = 0

𝐵0
𝑛 1 = ⋯ = 𝐵𝑛−1

𝑛 1 = 0, 𝐵𝑛
𝑛 1 = 1

Derivatives
𝐵𝑖

𝑛
𝑡 =

𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Bernstein basis properties
• Derivatives:

𝑑

𝑑𝑡
𝐵𝑖

𝑛
𝑡 =

Derivatives
𝐵𝑖

𝑛
𝑡 =

𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Bernstein basis properties
• Derivatives:

𝑑

𝑑𝑡
𝐵𝑖

𝑛
𝑡 =

𝑛
𝑖

𝑖𝑡 𝑖−1 1 − 𝑡 𝑛−𝑖 − 𝑛 − 𝑖 𝑡𝑖 1 − 𝑡 𝑛−𝑖−1

=
𝑛!

𝑛 − 𝑖 ! 𝑖!
𝑖𝑡 𝑖−1 1 − 𝑡 𝑛−𝑖 −

𝑛!

𝑛 − 𝑖 ! 𝑖!
𝑛 − 𝑖 𝑡𝑖 1 − 𝑡 𝑛−𝑖−1

= 𝑛
𝑛 − 1
𝑖 − 1

𝑡 𝑖−1 1 − 𝑡 𝑛−𝑖 −
𝑛 − 1
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖−1

= 𝑛 𝐵𝑖−1
𝑛−1

𝑡 − 𝐵𝑖
𝑛−1

𝑡

(Notation: {𝒌} = 𝒌 if 𝒌 > 𝟎, zero otherwise)

Derivatives
𝐵𝑖

𝑛
𝑡 =

𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Bernstein basis properties
• Derivatives:

𝑑2

𝑑𝑡2
𝐵𝑖

𝑛
𝑡 =

𝑑

𝑑𝑡
𝑛 𝐵𝑖−1

𝑛−1
𝑡 − 𝐵𝑖

𝑛−1
𝑡

= 𝑛 𝑛 − 1 𝐵𝑖−2
𝑛−2

𝑡 − 𝐵𝑖−1
𝑛−2

𝑡 − 𝑛 − 1 𝐵𝑖−1
𝑛−2

𝑡 − 𝐵𝑖
𝑛−2

𝑡

= 𝑛 𝑛 − 1 𝐵𝑖−2
𝑛−2

𝑡 − 2𝐵𝑖−1
𝑛−2

𝑡 + 𝐵𝑖
𝑛−2

𝑡

(Notation: {𝒌} = 𝒌 if 𝒌 > 𝟎, zero otherwise)

Bezier Curves in Bernstein form

• Bezier Curves:

𝒇 𝑡 = σ𝑖=1
𝑛 𝐵𝑖

𝑛𝒑𝑖 , 𝑡 ∈ 0,1

Bezier Curves in Bernstein form

• Bezier Curves:

𝒇 𝑡 = σ𝑖=1
𝑛 𝐵𝑖

𝑛𝒑𝑖 , 𝑡 ∈ 0,1

Bezier Curves in Bernstein form

• Bezier Curves:

𝒇 𝑡 = σ𝑖=1
𝑛 𝐵𝑖

𝑛𝒑𝑖 , 𝑡 ∈ 0,1

Bezier Curves in Bernstein form

• Bezier Curves:

𝒇 𝑡 = σ𝑖=1
𝑛 𝐵𝑖

𝑛𝒑𝑖 , 𝑡 ∈ 0,1

Bezier Curves in Bernstein form

• Bezier Curves, also in 3D

𝒇 𝑡 = σ𝑖=1
𝑛 𝐵𝑖

𝑛𝒑𝑖 , 𝑡 ∈ 0,1

Bezier Curves in Bernstein form

• Bezier curves:
• Curves: 𝒇 𝑡 = σ𝑖=1

𝑛 𝐵𝑖
𝑛𝒑𝑖

• Considering the interval 𝑡 ∈ 0. . 1

• Properties as discussed before:
• Affine invariant

• Curves contained in the convex hull

• Influence of control points

Moving along the curve with index 𝑖

Largest influence at 𝑡 =
𝑖

𝑛

Single curve segments: no full local control

Bezier Curve Properties:
another look at derivatives

• Given: 𝒑0, … , 𝒑𝑛, 𝒇 𝑡 = σ𝑖=0
𝑛 𝐵𝑖

𝑛 𝑡 𝒑𝑖

• Then: 𝒇′ 𝑡 = 𝑛σ𝑖=0
𝑛−1𝐵𝑖

𝑛−1 𝑡 𝒑𝑖+1 − 𝒑𝑖

• Proof: 𝒇′ 𝑡 = σ𝑖=0
𝑛 𝑑

𝑑𝑡
𝐵𝑖
𝑛 𝑡 𝒑𝑖 = 𝑛σ𝑖=0

𝑛 𝐵𝑖−1
𝑛−1 𝑡 − 𝐵𝑖

𝑛−1 𝑡 𝒑𝑖

= 𝑛

𝑖=0

𝑛

𝐵𝑖−1
𝑛−1 𝑡 𝒑𝑖 − 𝑛

𝑖=0

𝑛

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖

= 𝑛

𝑖=−1

𝑛−1

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖+1 − 𝑛

𝑖=0

𝑛

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖 = 𝑛

𝑖=0

𝑛−1

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖+1 − 𝑛

𝑖=0

𝑛−1

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖

= 𝑛

𝑖=0

𝑛−1

𝐵𝑖
𝑛−1 𝑡 𝒑𝑖+1 − 𝒑𝑖

Index
change

Bezier Curve Properties

• Higher order derivatives:

𝑓 𝑟 𝑡 =
𝑛!

𝑛 − 𝑟 !
⋅

𝑖=0

𝑛−𝑟

𝐵𝑖
𝑛−𝑟 𝑡 ⋅ Δ𝑟𝒑𝑖

Bezier Curve Properties

• Imporant for continuous concatenation:
• Function value at 0,1 :

𝒇 𝑡 =

𝑖=0

𝑛−1
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖𝒑𝑖

⇒ 𝒇 0 = 𝒑0
𝒇 1 = 𝒑1

• First derivative vector at 0,1

• Second derivative vector at 0,1

Bezier Curve Properties

First derivative vector at 0,1
𝑑

𝑑𝑡
𝒇 𝑡 =

Bezier Curve Properties

First derivative vector at 0,1

𝑑

𝑑𝑡
𝒇 𝑡 = 𝑛

𝑖=0

𝑛−1

𝐵𝑖−1
𝑛−1

𝑡 − 𝐵𝑖
𝑛−1

𝑡 𝒑𝑖

Bezier Curve Properties

First derivative vector at 0,1

𝑑

𝑑𝑡
𝒇 𝑡 = 𝑛

𝑖=0

𝑛−1

𝐵𝑖−1
𝑛−1

𝑡 − 𝐵𝑖
𝑛−1

𝑡 𝒑𝑖

= 𝑛 ቀ

ቁ

−𝐵0
𝑛−1

𝑡 𝒑0 + 𝐵0
𝑛−1

𝑡 − 𝐵1
𝑛−1

𝑡 𝒑1 +⋯

+ 𝐵𝑛−2
𝑛−1

𝑡 − 𝐵𝑛−1
𝑛−1

𝑡 𝒑𝑛−1 + 𝐵𝑛−1
𝑛−1

𝑡 𝒑𝑛

𝑑

𝑑𝑡
𝒇 0 = 𝑛 𝒑1 − 𝒑0

𝑑

𝑑𝑡
𝒇 1 = 𝑛 𝒑𝑛 − 𝒑𝑛−1

Bezier Curve Properties

• Imporant for continuous concatenation:
• Function value at 0,1 :

𝒇 0 = 𝒑0
𝒇 1 = 𝒑1

• First derivative vector at 0,1
𝒇′ 0 = 𝑛 𝒑1 − 𝒑0
𝒇′ 1 = 𝑛 𝒑𝑛 − 𝒑𝑛−1

• Second derivative vector at 0,1
𝒇′′ 0 = 𝑛 𝑛 − 1 𝒑2 − 𝟐𝒑1 + 𝒑0

𝒇′′ 1 = 𝑛 𝑛 − 1 𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2

