TRV B Lt
2021 FKF 5

Bezier Curves

BRI

h ERME AR A

Bezier curves

* Bezier curves/splines developed by
* Paul de Casteljau at Citroen (1959)
* Pierre Bezier at Renault (1963)
for free-form parts in automotive design

Bezier curves

* Today: Standard tool for 2D curve editing

* Cubic 2D Bezier curves are everywhere:
* Inkscape, Corel Draw, Adobe lllustrator, Powerpoint, -
* PDF, Truetype (quadratic curves), Windows GDI, -

* Widely used in 3D curve & surface modeling as well

Curve representation

* The implicit curve form f(x,y) = 0 suffers
from several limitations: \

Curve representation

* The implicit curve form f(x,y) = 0 suffers
from several [Imitations:

* Multiple values for the same x-coordinates

. ... d
* Undefined derivative d—i} (see blue cross)

 Not Invariant w.r.t axes transformations

X ——N—— — — % — %

Parametric representation

* Remedy: parametric representation c(t) = (x(t),y(t))

* Easy evaluations
* The parameter t can be interpreted as time

* The curve can be interpreted as the path traced by a moving particle

Modeling with the power basis,

* Example of a parabola: f(t) = at* + bt + ¢

f(t)=(i)t2+(

0.5

1-0.5

—2
0

e+

0

Modeling with the power basis, -

no thanks!

* Examples of a parabola: f(t) = at* + bt + c: the coefficients of
the power basis lack intuitive geometric meaning

-1-0.5

o

—2
0

Jel

1
0

|

Back to the drawing boarad

* A point on a parametric line

bl = (1 —t)bg + tb,

Back to the drawing boarad

* Another point on a second parametric line

bl =1 -t)b, + th,
bl = (1 —t)bg + tb,

Back to the drawing boarad

* A third point on the line defined by the first two points

bl = (1 —t)bg + tb,

b5 = (1 —t)b} + tb]

Back to the drawing boarad

* And then simplify--

bl = (1 —t)by + th,

b5 = (1 —t)b} + th]
b} = (1 —-t)by + tb,
bs = (1—t)[(1 —t)by + tby] + t[(1 —)by + tb,]

b5 = (1 —t)%by + 2t(1 — t)by + t2b,

Back to the drawing boarad

* We obtained another description of
parabolic curves

* The coefficients by, b4, b, have a
geometric meaning

b3 = (1 —t)?by + 2t(1 — t)b, + t*b,

Example re-visited

* Let’s rewrite our Initial parabolic curve example in the new basis

0=+ (Der ()

f(t) = ((1)) (1—1t)% + (8) 2t(1 —t) + ((1)) t?

Example re-visited

* The coefficient have a geometric meaning

* More intuitive for curve manipulation

\
-0.5

-1-0.5

|
0.5

f(t)= (;JU— t)” + (S)Zt(‘l—t)+((1)]t2

Another example

Going further

* Cubic approximation
* Given 4 points: po(t) =po, PI(t) =p1, P2(t) =Pz P3(t) = P3
* First iteration po = (1 —t)py + tp,
pi=(1-0p, +tp;
p; = (1 —t)p, + tps
o 2Nd jteration p5 = (1 —t)*py + 2t(1 — t)p, + t*p,

pi =1 —-t)*p, +2t(1 — t)p, + t?ps

* Curve
c(t) = (1 —-1t)3py + 3t(1 —t)?p, + 3t2(1 — t)p, + t3ps

Throughout these examples, we just re-invented a primitive version
of the de Casteljau algorithm

Now let’'s examine it more closely -

De Casteljau algorithm

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* |terate, until only one points is left

De Casteljau algorithm

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* |terate, until only one points is left

De Casteljau algorithm

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* |terate, until only one points is left

De Casteljau algorithm

s /y:\\

* De Casteljau Algorithm: Computes x(t) for given t
* Bisect control polygon in ratio t: (1 —t)
* Connect the new dots with lines (adjacent segments)
* Interpolate again with the same ratio
* |terate, until only one points is left

De Casteljau algorithm

* Algorithm description
* Input: points by, b,,..b, € R3
* Output: curve x(t),t € [0,1]

* Geometric construction of the points x(t) for given t:
b?(t) = bir [= O, vy, n
by (t) = (1 —t)b]~'(t) + t bl (t)
r=1,..,n i=0,...n—r

* Then by (t) is the searched curve point x(t) at the parameter value t

De Casteljau algorithm

* Repeated convex combination of control points
(r) _ (r—1) (r—1)
b; " = (1-1t)b, +tb:

1+1

bgo) b,

(¥

2%

28

De Casteljau algorithm

* Repeated convex combination of control points

b =1 -6)b" P +thl M

1+1

by \¢
&

(0) L3 ; (1)
by "7 bo
&

0)_t N (1)
b, b}

N
&

(0) (1)
b, — b,

De Casteljau algorithm

* Repeated convex combination of control points

b =1 -6)b" P +thl M

1+1

N

0)—L 3 ; (1)
bi "¢ by

De Casteljau algorithm

* Repeated convex combination of control points
b =1 -6)b" P +thl M

N N
& &
(0) __t (1) _ ¢t (2)
b > b
2 J\ 1 J\ bO V4
& &
(0) (1) 2
b3 t bz t bg) t

De Casteljau scheme

De Casteljau algorithm

* The intermediate coefficients b; (t) can be written in a triangular matrix: the
de Casteljau scheme:

bO — b8
b, = bg b%

b, =hb bl . .. Bl BT =x(t)

De Casteljau algorithm

Algorithm:
for r=1..n
for 1=0..n-r
b = 1 -0 bV + tbV Y
end

end

The whole algorithm consists only of
repeated linear interpolations.

return b'™

De Casteljau algorithm: Properties

* The polygon consisting of the points by, ..., b, is called Bezier polygon
(control polygon)

* The points b; are called Bezier points (control points)

* The curve defined by the Bezier points by, ..., b,, and the de Casteljau
algorithm is called Bezier curve

* The de Casteljau algorithm is numerically stable, since only convex
combinations are applied.

* Complexity of the de Casteljau algorithm
* 0(n%) time
* 0(n) memory
* with n being the number of Bezier points

De Casteljau algorithm: Properties

* Properties of Bezier curves:
* Given: Bezier points by, ..., by
Bezier curve x(t)
* Bezier curve Is polynomial curve of degree n

* End points interpolation: x(0) = by, x(1) = b,,. The remaining Bezier
points are only approximated in general
* Convex hull property:

Bezier curve Is completely inside the convex hull of its Bezier polygon

De Casteljau algorithm: Properties

* Variation diminishing
* No line Iintersects the Bezier curve more often than its Bezier polygon

* Influence of Bezier points: global but pseudo-local
* Global: moving a Bezier points changes the whole curve progression

* Pseudo-local: b; has its maximal influence on x(t) att = %

 Affine invariance:

* Bezier curve and Bezier polygon are invariant under affine
transformations

* Invariance under affine parameter transformations

De Casteljau algorithm: Properties

* Symmetry
* The following two Bezier curves coincide, they are only traversed In
opposite directions:

x(t) = [by, ...,b,] x'(t) = [b,, ... b,]

* Linear Precision:
* Bezier curve is line segment, if by, ..., b,, are colinear

* [nvariance under barycentric combinations

Recap

de Casteljau algorithm

Bezier Curves
Towards a polynomial description

Bezier Curves
Towards a polynomial description

b,

Polynomial description of Bezier curves

* The same problem as before:
* Given: (n + 1) control points by, ..., b,
* Wanted: Bezier curve x(t) with t € [0,1]

* Now with an algebraic approach using basis functions

Desirable Properties

* Useful requirements for a basis:

 Well behaved curve
* Smooth basis functions

Desirable Properties

* Useful requirements for a basis:
* Well behaved curve
* Smooth basis functions

* Local control (or at least semi-local)
* Basis functions with compact support

Desirable Properties

* Useful requirements for a basis:

 Well behaved curve
* Smooth basis functions

* Local control (or at least semi-local)
* Basis functions with compact support

* Affine Invariance:
* Appling an affine map x - Ax + b on
* Control points
* Curve
Should have the same effect
* |n particular: rotation, translation
* Otherwise: interactive curve editing very difficult

Desirable Properties

* Useful requirements for a basis:

* Convex hull property:
* The curve lays within the convex hull of its control points
* Avoids at least too weird oscillations

* Advantages

* Computational advantages (recursive intersection tests)
* More predictable behavior

summary

* Useful properties
* Smoothness
* Local control / support
* Affine Iinvariance
* Convex hull property

Notations

Curve

SS

~

basis function control points

\ P
\ ’

n
Cf© =) bi(Op;
=1

Affine Invariance

* Affine map: x > Ax + b

* Part I: Linear invariance — we get this automatically

* Linear approach:

f(t) =21 bi(Op; = Xi=1 b;i(t)

[p)

)
l

p
\pi(z) /

* Therefore: A(f(1)) = AQXT, bi(©)py) = Xieq1 bi(©)(4p))

Affine Invariance

* Affine Invariance:
* Affine map: x > Ax+ b
 Part ll: Translational invariance

zn: bi(t)(p; +b) = zn: b;(t)p; + Zn: bi(t)b = f(t) + (i bi(t)> b
i=1 i=1 i=1 i=1

* For translational invariance, the sum of the basis functions must be one everywhere
(for all parameter values t that are used).

* This is called “partition of unity property”
* The b;'s form an “affine combination” of the control points p;

* This is very important for modeling

Convex Hull Property

* Convex combinations:
* A convex combination of a set of points {p4, ..., P»} is any point of the form:

L Apiwith Y, 4y =landVi=1..nm:0< ;<1

* (Remark: 4; < 1 is redundant)

* The set of all admissible convex combinations forms the convex hull of the
point set

* Easy to see (exercise): The convex hull is the smallest set that contains all points
{p1, ...,p,} and every complete straight line between two elements of the set

Convex Hull Property

* Accordingly:
* |f we have this property
Vte Q: Y bi(t) =1and Vt € Q,Vi:b;(t) =0
the constructed curves / surfaces will be:

* Affine invariant (translations, linear maps)
* Be restricted to the convex hull of the control points

* Corollary: Curves will have /inear precision
* All control points lie on a straight line
= Curve is a straight line segment

* Surfaces with planar control points will be flat, too

Convex Hull Property

* Very useful property In practice
* Avoids at least the worst oscillations
* no escape from convex hull, unlike polynomial interpolation
* Linear precision property Is Intuitive (people expect this)
* Can be used for fast range checks

* Test for intersection with convex hull first, then the object

* Recursive intersection algorithms in conjunctions with subdivision rules (more on
this later)

A

Polynomial description of Bezier curves

* The same problem as before:
* Given: (n + 1) control points by, ..., b,
* Wanted: Bezier curve x(t) with t € |0,1]

* Now with an algebraic approach using basis functions

* Need to define n 4+ 1 basis functions

* Such that this describes a Bezier curve:
B{(t), ..., BJl(t) over [0,1]

n

x(t) =) B'(®)- by

=0

Bernstein Basis

* Let's examine the Bernstein basis: B = {Bé"),Bl(”), ...,B,§”>}
* Bernstein basis of degree n:
Bi(n) (t) — (7:) ti(l _ t)n—i — B(degree)

i—th basis function
where the binomial coefficients are given by:
([nl
n for0<i<n
(V) =4m=or

. 0 otherwise

l

Binomial Coefficients and Theorem

, B™W (@) = () ti(1 -)n
Examples: The first few (&)

* The first three Bernstein bases:

BSO) =1

Bgl) =1-1 Bl(l) =t

B =1-1)2 B®=2t(1-t) B® =¢

B =(1-1t)® BP=3c(1-t)2 B :=3t2(1-t) B =13

Examples: The first few

Bél) =1t
31(1) =1
n=1 (linear)
B, B,

B{? = (1 - t)?
Bl(z) = 2t(1—1t)

2
l;é:) o— 152
n =2 (quadratic.)
By B,
B,

Bi(n) (t) — (7;) ti(l . t)n—i

BSO) =1
B = (1 -t)3
B3 = 3t(1 - t)?
B = 3t2(1 -0
33(3) — ¢3

n =3 (cubic)

062U 08

Bernstein Basis

* Bezier curves use the Bernstein basis: B = {Bén),Bl(n), ...,B,§">}
* Bernstein basis of degree n:

Bi(n) (t) = (7:) ti(l _ t)n—i — B.(degree)

i—th basis function

n=2 (quad.) " n=3 (cubic) " n=10
BO Bz 08 BO B3 08
Bl 06 Bl B2 06

0.2 04 06 08 1 0 02 04 06 08 1 0 0.2 04 06

Bernstein Basis

* What about the desired properties?
* Smoothness
* Local control / support
* Affine invariance
* Convex hull property

Bernstein Basis: Properties

- B ={B, B, ...B"} B (1) = (7)1 — o)

* Basis for polynomials of degree n
mothness J

* Each basis function Bi(n) has Its maximum at t = %

mrol (semi—local)}

Bernstein Basis: Properties

e B = {B(gn)’Bl(n)’ ."’Br(ln)}’ Bi(n)(t) _ (7;) ti(1 —)i

Affine invariance} %hull property J

* Partition of unity (binomial theorem) ! n=
1=(1—-t+¢t)

> BP@® =(t+(1-0)" =1
1=0

What about the desired properties?

* Smoothness
* Local control / support
* Affine Invariance

* Convex hull property

Bernstein Basis: Properties

_ [p() p(n) (n) (n) _ (M i —i
+B = {BO" 8™, ., B } B (t) = (i)t‘(l — t)n-i
* Recursive computation

B'(t) = (1 — t)B" V() + tB™ V(1 - t)
with Bo(t) = 1,B*(t) = 0 for i & {0 ...n}

* Symmetry

B'(t) =B;_;(1—1t)
* Non-negativity: Bi(")(t) >0 fort €]0..1]

Bernstein Basis: Properties

- B ={B, B, ...B"} B (1) = (7)1 — o)

* Non-negativity Il

B'(t) >0for0<t<1
Br(0)=1, B}0)=--=Br0)=0
Bf(1)=--=B}_,(1) =0, B(1) =1

o B™W (@) = () ti(1 -)n
Derivatives (1)

* Bernstein basis properties
* Derivatives:

a »(n) _
dtBi (t) =

o B™W () = () ti(1 -)n
Derivatives (i)

* Bernstein basis properties
* Derivatives:

o Bl(n) (t) = (l) (it{i—l}(l — i — (n=Dti(1 - t){n—i—l})

n! : : . .
= it -t - (n—i)e'(1 —pytn-i-u

n!
(n—i)!i! (n—1i)!i!
=n|(" T) e - o= (M e - pinin |

l
=n B<” V) - B™ 1>(t)]

(Notation: {k} = k if k > 0, zero otherwise)

o B™W () = () ti(1 -)n
Derivatives (i)

* Bernstein basis properties
* Derivatives:

LB =2a[B" @ - B0 |

=n[(n— 1) (B(n 2 (¢) — B(n 2)(t)) (n—1) (B(n 2 (p) — B(n 2)(t))]

n(n—1) [B(" D) — 2B 2 () + B™ 2>(t)]

(Notation: {k} = k if k > 0, zero otherwise)

Bezier Curves In Bernstein form

P>

* Bezier Curves: Py ;
3
f(©) =X, B'pi,t € [0,1]
Po

Bezier Curves In Bernstein form

P>

* Bezier Curves: P:
n pn P3 e
f(t) =21 B;'p;, t €[0,1]
Po Po
p

! n=3 (cubic) ST
o \Bg B,
" B, B,

Bezier Curves In Bernstein form

P>

* Bezier Curves: Py ; p
3 3
f(t) =" . B'p;,t € [0,1] g
Po Po

P, P>
P3

P>
P

Bezier Curves In Bernstein form

P>

* Bezier Curves: Py ; p
3 3
f(t) =" . B'p;,t € [0,1] Q
Po Po

P3

P>
P

P
Po

P, P>

p
P> }

Bezier Curves In Bernstein form

* Bezier Curves, also in 3D
f@) =X, Bi'pi, t € [0,1]

Bezier Curves In Bernstein form

P>
e Bezier curves: P1
* Curves: f(t) = Xiv, B{'pi
* Considering the interval t € [0..1] P,

* Properties as discussed before:
* Affine invariant
* Curves contained in the convex hull
* Influence of control points
Moving along the curve with index i

Largest influence at t = i

Single curve segments: no full local control

Bezier Curve Properties:
another look at derivatives

* Given: Pg, -, Pn, f(t) =X~ Bl (t) p;

* Then: f'(t) =n Xy B () (Piz1 — Pi)

» Proof: f'(6) = Zito; B"(t)pl =n- (Bln__ll(t) — Bln_l(t)) Pi

n
- nz B (O)p; - nz B (0)p,
n n—1 n-—1
{ index ? z B (OPis - 2 B Opi=n) BTN Opia—n) BIOp
i=0 =0

change i=—1

= nz B () (pi+1 — i)

Bezier Curve Properties

* Higher order derivatives:

i) =

. ZB" () p,

Bezier Curve Properties

* Imporant for continuous concatenation:

* Function value at {0,1}:

n—1
fo=> (})ra-omip,
20 = p,
f(1) =p,

* First derivative vector at {0,1}
* Second derivative vector at {0,1}

Bezier Curve Properties A o3 cubiq

First derivative vector at {0,1} . \B, B,

d
—ft) =

Bezier Curve Properties A e (cubic

First derivative vector at {0,1} . \B, B,

n-1

SFO=nY [B 0 - B0

1=0

Bezier Curve Properties

First derivative vector at {0,1}

n-1

SO =1y [B@ - B O]

=n ([—BS"_”(;)TPO + B P - B py + |
+[BI5P@®) = B (0| pas + BV 0| 2) 1 n=10

%f(()) =n(p, — Po) %f(l) =n(P, — Pn_1)

Bezier Curve Properties

* Imporant for continuous concatenation:

* Function value at {0,1}:

f(0) = po

f(1) =p;
* First derivative vector at {0,1}

f'(0) =n|p; — pol
/() =n[pn — pn-1l
* Second derivative vector at {0,1}
f7(0) =n(n-1)[p, — 2p; + pol

f”(l) =n(n-—-1) [pn — 2Pp_1 t pn—z]

