

Bezier Curves

陈仁杰

中国科学技术大学

Bezier curves

- Bezier curves/splines developed by
 - Paul de Casteljau at Citroen (1959)
 - Pierre Bezier at Renault (1963)

for free-form parts in automotive design

Bezier curves

- Today: Standard tool for 2D curve editing
- Cubic 2D Bezier curves are everywhere:
 - Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ...
 - PDF, Truetype (quadratic curves), Windows GDI, …
- Widely used in 3D curve & surface modeling as well

Curve representation

• The implicit curve form f(x, y) = 0 suffers from several limitations:

Curve representation

- The implicit curve form f(x, y) = 0 suffers from several limitations:
 - Multiple values for the same *x*-coordinates
 - Undefined derivative $\frac{dy}{dx}$ (see blue cross)
 - Not invariant w.r.t axes transformations

Parametric representation

- Remedy: parametric representation c(t) = (x(t), y(t))
 - Easy evaluations
 - The parameter *t* can be interpreted as time
 - The curve can be interpreted as the path traced by a moving particle

Modeling with the power basis, ...

• Example of a parabola: $f(t) = at^2 + bt + c$

Modeling with the power basis, ... no thanks!

• Examples of a parabola: $f(t) = at^2 + bt + c$: the coefficients of the power basis lack intuitive geometric meaning

• A point on a parametric line

 $b_{0}^{1} = (1-t)b_{0} + tb_{1} \qquad b_{0}^{1}$ b_{0}^{0}

• Another point on a second parametric line

• A third point on the line defined by the first two points

- And then simplify...
- $b_0^1 = (1-t)b_0 + tb_1$

$$b_0^2 = (1-t)b_0^1 + tb_1^1$$

 $b_1^1 = (1-t)b_1 + tb_2$

$$\boldsymbol{b_0^2} = (1-t)[(1-t)\boldsymbol{b_0} + t\boldsymbol{b_1}] + t[(1-t)\boldsymbol{b_1} + t\boldsymbol{b_2}]$$

$$\boldsymbol{b_0^2} = (1-t)^2 \boldsymbol{b_0} + 2t(1-t)\boldsymbol{b_1} + t^2 \boldsymbol{b_2}$$

• We obtained another description of parabolic curves

The coefficients b₀, b₁, b₂ have a geometric meaning

$$\boldsymbol{b_0^2} = (1-t)^2 \boldsymbol{b_0} + 2t(1-t)\boldsymbol{b_1} + t^2 \boldsymbol{b_2}$$

Example re-visited

• Let's rewrite our initial parabolic curve example in the new basis

$$\boldsymbol{f}(t) = \begin{pmatrix} 1\\1 \end{pmatrix} t^2 + \begin{pmatrix} -2\\0 \end{pmatrix} t + \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$\boldsymbol{f}(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} (1-t)^2 + \begin{pmatrix} 0 \\ 0 \end{pmatrix} 2t(1-t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} t^2$$

Example re-visited

- The coefficient have a geometric meaning
- More intuitive for curve manipulation

Going further

- Cubic approximation
- $p_0^0(t) = p_0, p_1^0(t) = p_1, p_2^0(t) = p_2, p_3^0(t) = p_3$ • Given 4 points: $p_0^1 = (1-t)p_0 + tp_1$ First iteration $p_1^1 = (1-t)p_1 + tp_2$ $p_2^1 = (1-t)p_2 + tp_3$ • 2nd iteration $p_0^2 = (1-t)^2 p_0 + 2t(1-t)p_1 + t^2 p_2$ $p_1^2 = (1-t)^2 p_1 + 2t(1-t)p_2 + t^2 p_3$ • Curve

$$\boldsymbol{c}(t) = (1-t)^3 \boldsymbol{p}_0 + 3t(1-t)^2 \boldsymbol{p}_1 + 3t^2(1-t)\boldsymbol{p}_2 + t^3 \boldsymbol{p}_3$$

Throughout these examples, we just re-invented a primitive version of the de Casteljau algorithm

Now let's examine it more closely ...

- De Casteljau Algorithm: Computes x(t) for given t
 - Bisect control polygon in ratio t:(1-t)
 - Connect the new dots with lines (adjacent segments)
 - Interpolate again with the same ratio
 - Iterate, until only one points is left

- De Casteljau Algorithm: Computes x(t) for given t
 - Bisect control polygon in ratio t:(1-t)
 - Connect the new dots with lines (adjacent segments)
 - Interpolate again with the same ratio
 - Iterate, until only one points is left

- De Casteljau Algorithm: Computes x(t) for given t
 - Bisect control polygon in ratio t:(1-t)
 - Connect the new dots with lines (adjacent segments)
 - Interpolate again with the same ratio
 - Iterate, until only one points is left

- De Casteljau Algorithm: Computes x(t) for given t
 - Bisect control polygon in ratio t:(1-t)
 - Connect the new dots with lines (adjacent segments)
 - Interpolate again with the same ratio
 - Iterate, until only one points is left

- Algorithm description
 - Input: points $\boldsymbol{b}_0, \boldsymbol{b}_1, \dots \boldsymbol{b}_n \in \mathbb{R}^3$
 - Output: curve $x(t), t \in [0,1]$
 - Geometric construction of the points $\mathbf{x}(t)$ for given t:

$$b_i^0(t) = b_i, i = 0, ..., n$$

$$b_i^r(t) = (1 - t)b_i^{r-1}(t) + t b_{i+1}^{r-1}(t)$$

$$r = 1, ..., n i = 0, ..., n - r$$

• Then $\boldsymbol{b}_0^n(t)$ is the searched curve point $\boldsymbol{x}(t)$ at the parameter value t

• Repeated convex combination of control points

$$b_{i}^{(r)} = (1 - t)b_{i}^{(r-1)} + tb_{i+1}^{(r-1)}$$

$$b_{0}^{(0)}$$

$$b_{1}^{(0)}$$

$$b_{2}^{(0)}$$

$$b_{0}^{(0)}$$

۵₂(۵,

Da

$$b_{3}^{(0)}$$

• Repeated convex combination of control points

• Repeated convex combination of control points

• Repeated convex combination of control points

• The intermediate coefficients $\boldsymbol{b}_{i}^{r}(t)$ can be written in a triangular matrix: the de Casteljau scheme:

$$b_0 = b_0^0$$

$$b_1 = b_1^0 \qquad b_0^1$$

$$b_2 = b_2^0 \qquad b_1^1 \qquad b_0^2$$

$$b_3 = b_3^0 \qquad b_2^1 \qquad b_1^2 \qquad b_1^3$$

$$b_{n-1} = b_{n-1}^{0} \qquad b_{n-2}^{1} \qquad \dots \quad b_{0}^{n-1}$$

$$b_{n} = b_{n}^{0} \qquad b_{n-1}^{1} \qquad \dots \quad b_{1}^{n-1} \qquad b_{0}^{n} = x(t)$$

- The polygon consisting of the points b_0, \ldots, b_n is called Bezier polygon (control polygon)
- The points **b**_i are called Bezier points (control points)
- The curve defined by the Bezier points b_0, \ldots, b_n and the de Casteljau algorithm is called Bezier curve
- The de Casteljau algorithm is numerically stable, since only convex combinations are applied.
- Complexity of the de Casteljau algorithm
 - $O(n^2)$ time
 - *O*(*n*) memory
 - with n being the number of Bezier points

• Properties of Bezier curves:

- Given: Bezier points $\boldsymbol{b}_0, \dots, \boldsymbol{b}_n$ Bezier curve $\boldsymbol{x}(t)$
- Bezier curve is polynomial curve of degree n
- End points interpolation: $x(0) = b_0$, $x(1) = b_n$. The remaining Bezier points are only approximated in general
- Convex hull property:

Bezier curve is completely inside the convex hull of its Bezier polygon

Variation diminishing

- No line intersects the Bezier curve more often than its Bezier polygon
- Influence of Bezier points: global but pseudo-local
 - Global: moving a Bezier points changes the whole curve progression
 - Pseudo-local: \boldsymbol{b}_i has its maximal influence on x(t) at $t = \frac{i}{n}$

• Affine invariance:

• Bezier curve and Bezier polygon are invariant under affine transformations

• Invariance under affine parameter transformations

• Symmetry

• The following two Bezier curves coincide, they are only traversed in opposite directions:

$$x(t) = [b_0, ..., b_n]$$
 $x'(t) = [b_n, ..., b_0]$

• Linear Precision:

- Bezier curve is line segment, if $\boldsymbol{b}_0, \dots, \boldsymbol{b}_n$ are colinear
- Invariance under barycentric combinations

Recap

Bezier Curves

Towards a polynomial description

Bezier Curves Towards a polynomial description

Polynomial description of Bezier curves

- The same problem as before:
 - Given: (n + 1) control points $\boldsymbol{b}_0, \dots, \boldsymbol{b}_n$
 - Wanted: Bezier curve x(t) with $t \in [0,1]$
- Now with an algebraic approach using basis functions

- Useful requirements for a basis:
 - Well behaved curve
 - Smooth basis functions

- Useful requirements for a basis:
 - Well behaved curve
 - Smooth basis functions
 - Local control (or at least semi-local)
 - Basis functions with compact support

- Useful requirements for a basis:
 - Well behaved curve
 - Smooth basis functions
 - Local control (or at least semi-local)
 - Basis functions with compact support
 - Affine invariance:
 - Appling an affine map $x \to Ax + b$ on
 - Control points
 - Curve

Should have the same effect

- In particular: rotation, translation
- Otherwise: interactive curve editing very difficult

- Useful requirements for a basis:
 - Convex hull property:
 - The curve lays within the convex hull of its control points
 - Avoids at least too weird oscillations
 - Advantages
 - Computational advantages (recursive intersection tests)
 - More predictable behavior

Summary

- Useful properties
 - Smoothness
 - Local control / support
 - Affine invariance
 - Convex hull property

Affine Invariance

- Affine map: $\mathbf{x} \to A\mathbf{x} + \mathbf{b}$
- **Part I:** Linear invariance we get this automatically
 - Linear approach: $f(t) = \sum_{i=1}^{n} b_i(t) p_i = \sum_{i=1}^{n} b_i(t) \begin{pmatrix} p_i^{(x)} \\ p_i^{(y)} \\ p_i^{(z)} \end{pmatrix}$ Therefore: A(f(t))
 - Therefore: $A(\boldsymbol{f}(t)) = A(\sum_{i=1}^{n} b_i(t)\boldsymbol{p}_i) = \sum_{i=1}^{n} b_i(t)(A\boldsymbol{p}_i)$

Affine Invariance

- Affine Invariance:
 - Affine map: $x \rightarrow Ax + b$
 - Part II: Translational invariance $\sum_{i=1}^{n} b_i(t)(\mathbf{p}_i + \mathbf{b}) = \sum_{i=1}^{n} b_i(t)\mathbf{p}_i + \sum_{i=1}^{n} b_i(t)\mathbf{b} = \mathbf{f}(t) + \left(\sum_{i=1}^{n} b_i(t)\right)\mathbf{b}$
 - For translational invariance, the sum of the basis functions must be one *everywhere* (for all parameter values *t* that are used).
 - This is called "partition of unity property"
 - The b_i 's form an "affine combination" of the control points p_i
 - This is very important for modeling

Convex Hull Property

- Convex combinations:
 - A convex combination of a set of points $\{p_1, ..., p_n\}$ is any point of the form:

 $\sum_{i=1}^{n} \lambda_i \mathbf{p}_i$ with $\sum_{i=1}^{n} \lambda_i = 1$ and $\forall i = 1 \dots n: 0 \le \lambda_i \le 1$

- (Remark: $\lambda_i \leq 1$ is redundant)
- The set of all admissible convex combinations forms the convex hull of the point set
 - Easy to see (exercise): The convex hull is the smallest set that contains all points $\{p_1, \dots, p_n\}$ and every complete straight line between two elements of the set

Convex Hull Property

- Accordingly:
 - If we have this property

 $\forall t \in \Omega: \sum_{i=1}^{n} b_i(t) = 1 \text{ and } \forall t \in \Omega, \forall i: b_i(t) \ge 0$

the constructed curves / surfaces will be:

- Affine invariant (translations, linear maps)
- Be restricted to the convex hull of the control points
- Corollary: Curves will have *linear precision*
 - All control points lie on a straight line
 - \Rightarrow Curve is a straight line segment
- Surfaces with planar control points will be flat, too

Convex Hull Property

- Very useful property in practice
 - Avoids at least the worst oscillations
 - no escape from convex hull, unlike polynomial interpolation
 - Linear precision property is intuitive (people expect this)
 - Can be used for fast range checks
 - Test for intersection with convex hull first, then the object
 - Recursive intersection algorithms in conjunctions with subdivision rules (more on this later)

Polynomial description of Bezier curves

- The same problem as before:
 - Given: (n + 1) control points $\boldsymbol{b}_0, \dots, \boldsymbol{b}_n$
 - Wanted: Bezier curve x(t) with $t \in [0,1]$
- Now with an algebraic approach using basis functions
- Need to define n + 1 basis functions
 - Such that this describes a Bezier curve:

$$B_0^n(t), \dots, B_n^n(t) \text{ over } [0,1]$$
$$\boldsymbol{x}(t) = \sum_{i=0}^n B_i^n(t) \cdot \boldsymbol{b}_i$$

Bernstein Basis

• Let's examine the Bernstein basis: $B = \{B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)}\}$

• Bernstein basis of degree *n*:

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i} = B_{i-\text{th basis function}}^{(\text{degree})}$$

where the binomial coefficients are given by:

$$\binom{n}{i} = \begin{cases} \frac{n!}{(n-i)! \, i!} & \text{for } 0 \le i \le n \\ 0 & \text{otherwise} \end{cases}$$

Binomial Coefficients and Theorem

 \wedge

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Examples: The first few

• The first three Bernstein bases:

$$B_0^{(0)} \coloneqq 1$$

$$B_0^{(1)} \coloneqq 1 - t \qquad B_1^{(1)} \coloneqq t$$

$$B_0^{(2)} \coloneqq (1 - t)^2 \qquad B_1^{(2)} \coloneqq 2t(1 - t) \qquad B_2^{(2)} \coloneqq t^2$$

$$B_0^{(3)} \coloneqq (1 - t)^3 \qquad B_1^{(3)} \coloneqq 3t(1 - t)^2 \qquad B_2^{(3)} \coloneqq 3t^2(1 - t) \qquad B_3^{(3)} \coloneqq t^3$$

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Examples: The first few

0.8-

0.6

0.4

0.2

0.4

0.2

0.6

0.8

Bernstein Basis

- Bezier curves use the Bernstein basis: $B = \left\{ B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)} \right\}$
 - Bernstein basis of degree *n*:

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i} = B_{i-\text{th basis function}}^{(\text{degree})}$$

Bernstein Basis

- What about the desired properties?
 - Smoothness
 - Local control / support
 - Affine invariance
 - Convex hull property

Bernstein Basis: Properties

•
$$B = \left\{ B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)} \right\}, B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Bernstein Basis: Properties

•
$$B = \left\{ B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)} \right\}, B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Partition of unity (binomial theorem)

$$1 = (1 - t + t)$$
$$\sum_{i=0}^{n} B_i^{(n)}(t) = (t + (1 - t))^n = 1$$

What about the desired properties?

- Smoothness
- Local control / support
- Affine invariance
- Convex hull property

Yes To some extent Yes Yes

Bernstein Basis: Properties

•
$$B = \left\{ B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)} \right\}, B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-1}$$

- Recursive computation $B_i^n(t) \coloneqq (1-t)B_i^{(n-1)}(t) + tB_{i-1}^{(n-1)}(1-t)$ with $B_0^0(t) = 1, B_i^n(t) = 0$ for $i \notin \{0 \dots n\}$
- Symmetry

$$B_i^n(t) = B_{n-i}^n(1-t)$$

• Non-negativity: $B_i^{(n)}(t) \ge 0$ for $t \in [0..1]$

Bernstein Basis: Properties

•
$$B = \left\{ B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)} \right\}, B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Non-negativity II

 $B_i^n(t) > 0 \text{ for } 0 < t < 1$ $B_0^n(0) = 1, \qquad B_1^n(0) = \dots = B_n^n(0) = 0$ $B_0^n(1) = \dots = B_{n-1}^n(1) = 0, \qquad B_n^n(1) = 1$

Derivatives

 $B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$

- Bernstein basis properties
 - Derivatives:

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Derivatives

- Bernstein basis properties
 - Derivatives:

$$\begin{split} &\frac{d}{dt}B_{i}^{(n)}(t) = \binom{n}{i}\left(it^{\{i-1\}}(1-t)^{n-i} - (n-i)t^{i}(1-t)^{\{n-i-1\}}\right) \\ &= \frac{n!}{(n-i)!\,i!}\,it^{\{i-1\}}(1-t)^{n-i} - \frac{n!}{(n-i)!\,i!}\,(n-i)t^{i}(1-t)^{\{n-i-1\}} \\ &= n\left[\binom{n-1}{i-1}t^{\{i-1\}}(1-t)^{n-i} - \binom{n-1}{i}t^{i}(1-t)^{\{n-i-1\}}\right] \\ &= n\left[B_{i-1}^{(n-1)}(t) - B_{i}^{(n-1)}(t)\right] \end{split}$$

(Notation: $\{k\} = k$ if k > 0, zero otherwise)

$$B_i^{(n)}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Derivatives

- Bernstein basis properties
 - Derivatives:

$$\frac{d^2}{dt^2} B_i^{(n)}(t) = \frac{d}{dt} n \left[B_{i-1}^{(n-1)}(t) - B_i^{(n-1)}(t) \right]$$

= $n \left[(n-1) \left(B_{i-2}^{(n-2)}(t) - B_{i-1}^{(n-2)}(t) \right) - (n-1) \left(B_{i-1}^{(n-2)}(t) - B_i^{(n-2)}(t) \right) \right]$
= $n(n-1) \left[B_{i-2}^{(n-2)}(t) - 2B_{i-1}^{(n-2)}(t) + B_i^{(n-2)}(t) \right]$

(Notation: $\{k\} = k$ if k > 0, zero otherwise)

Bezier Curves in Bernstein form

p₂

Bezier Curves in Bernstein form

 \mathbf{p}_1

Bezier Curves in Bernstein form **p**₂ • Bezier Curves: \mathbf{p}_1 **p**₃ **p**₃ $\boldsymbol{f}(t) = \sum_{i=1}^{n} B_i^n \boldsymbol{p}_i$, $t \in [0,1]$ \mathbf{p}_0 \mathbf{p}_0 **p**₂ \mathbf{p}_1 n = 3 (cubic) **p**₃ **B**₃ Bo 0.8 **p**₂ 0.6 B_1 **B**₂ \mathbf{p}_1 0.4 0.2 0.4 0.2 0.6 0.8 \mathbf{p}_0

Bezier Curves in Bernstein form

• Bezier Curves, also in 3D $f(t) = \sum_{i=1}^{n} B_{i}^{n} p_{i}$, $t \in [0,1]$ D₆ Ь,

D

Bezier Curves in Bernstein form

- Bezier curves:
 - Curves: $f(t) = \sum_{i=1}^{n} B_i^n p_i$
 - Considering the interval $t \in [0..1]$
 - Properties as discussed before:
 - Affine invariant
 - Curves contained in the convex hull
 - Influence of control points

Moving along the curve with index *i*

Largest influence at $t = \frac{i}{r}$

Single curve segments: no full local control

Bezier Curve Properties: another look at derivatives

- Given: $p_0, ..., p_n, f(t) = \sum_{i=0}^n B_i^n(t) p_i$
- Then: $f'(t) = n \sum_{i=0}^{n-1} B_i^{n-1}(t) (p_{i+1} p_i)$

• Proof:
$$f'(t) = \sum_{i=0}^{n} \frac{d}{dt} B_{i}^{n}(t) \mathbf{p}_{i} = n \sum_{i=0}^{n} \left(B_{i-1}^{n-1}(t) - B_{i}^{n-1}(t) \right) \mathbf{p}_{i}$$

$$= n \sum_{i=0}^{n} B_{i-1}^{n-1}(t) \mathbf{p}_{i} - n \sum_{i=0}^{n} B_{i}^{n-1}(t) \mathbf{p}_{i}$$

$$= n \sum_{i=-1}^{n-1} B_{i}^{n-1}(t) \mathbf{p}_{i+1} - n \sum_{i=0}^{n} B_{i}^{n-1}(t) \mathbf{p}_{i} = n \sum_{i=0}^{n-1} B_{i}^{n-1}(t) \mathbf{p}_{i+1} - n \sum_{i=0}^{n-1} B_{i}^{n-1}(t) \mathbf{p}_{i}$$

$$= n \sum_{i=0}^{n-1} B_{i}^{n-1}(t) (\mathbf{p}_{i+1} - \mathbf{p}_{i})$$

Bezier Curve Properties

• Higher order derivatives:

$$f^{[r]}(t) = \frac{n!}{(n-r)!} \cdot \sum_{i=0}^{n-r} B_i^{n-r}(t) \cdot \Delta^r \boldsymbol{p}_i$$

Bezier Curve Properties

- Imporant for continuous concatenation:
 - Function value at {0,1}:

$$f(t) = \sum_{i=0}^{n-1} {n \choose i} t^i (1-t)^{n-i} p_i$$
$$\Rightarrow f(0) = p_0$$
$$f(1) = p_1$$

- First derivative vector at {0,1}
- Second derivative vector at {0,1}

Bezier Curve Properties

First derivative vector at $\{0,1\}$ $\frac{d}{dt}f(t) =$

Bezier Curve Properties

First derivative vector at {0,1} $\frac{d}{dt}\boldsymbol{f}(t) = n \sum_{i=0}^{n-1} \left[B_{i-1}^{(n-1)}(t) - B_i^{(n-1)}(t) \right] \boldsymbol{p}_i$

Bezier Curve Properties

First derivative vector at {0,1}

$$\frac{d}{dt}\boldsymbol{f}(t) = n \sum_{i=0}^{n-1} \left[B_{i-1}^{(n-1)}(t) - B_{i}^{(n-1)}(t) \right] \boldsymbol{p}_{i}$$

= $n \left(\left[-B_{0}^{(n-1)}(t) \right] \boldsymbol{p}_{0} + \left[B_{0}^{(n-1)}(t) - B_{1}^{(n-1)}(t) \right] \boldsymbol{p}_{1} + \left[B_{n-2}^{(n-1)}(t) - B_{n-1}^{(n-1)}(t) \right] \boldsymbol{p}_{n-1} + \left[B_{n-1}^{(n-1)}(t) \right] \boldsymbol{p}_{n} \right)$

$$\frac{d}{dt}\boldsymbol{f}(0) = n(\boldsymbol{p}_1 - \boldsymbol{p}_0) \qquad \frac{d}{dt}\boldsymbol{f}(1) = n(\boldsymbol{p}_n - \boldsymbol{p}_{n-1})$$

t

Bezier Curve Properties

- Imporant for continuous concatenation:
 - Function value at {0,1}:

 $f(0) = p_0$ $f(1) = p_1$

- First derivative vector at {0,1} $f'(0) = n[p_1 - p_0]$ $f'(1) = n[p_n - p_{n-1}]$
- Second derivative vector at $\{0,1\}$ $f''(0) = n(n-1)[p_2 - 2p_1 + p_0]$ $f''(1) = n(n-1)[p_n - 2p_{n-1} + p_{n-2}]$

