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Vector Spaces



Vectors

Vectors are arrows in space

Classically: 2 or 3 dim. Euclidean space



“Adding” Vectors:

concatenation

Vector Operations



Vector Operations

Scalar Multiplication:

Scaling vectors (incl. mirroring)



You can combine it…

Linear Combinations:

This is basically all you can do.

𝒓𝒓 = �
𝑖𝑖=1

𝑛𝑛

𝜆𝜆𝑖𝑖𝒗𝒗𝑖𝑖



Vector Spaces

• Definition: A vector space over a field 𝐹𝐹 (e.g. ℝ) is a set 𝑉𝑉 together 
with two operations

• Addition of vectors 𝒖𝒖 = 𝒗𝒗 + 𝒘𝒘
• Multiplication with scalars 𝒘𝒘 = 𝜆𝜆𝒗𝒗
such that

1. ∀𝒖𝒖,𝒗𝒗,𝒘𝒘 ∈ 𝑉𝑉: 𝒖𝒖 + 𝒗𝒗 + 𝒘𝒘 = 𝒖𝒖 + 𝒗𝒗 + 𝒘𝒘

2. ∀𝒖𝒖,𝒗𝒗 ∈ 𝑉𝑉:𝒖𝒖 + 𝒗𝒗 = 𝒗𝒗 + 𝒖𝒖

3. ∃𝟎𝟎𝑉𝑉 ∈ 𝑉𝑉:∀𝑣𝑣 ∈ 𝑉𝑉:𝒗𝒗 + 𝟎𝟎𝑽𝑽 = 𝒗𝒗

4. ∀𝒗𝒗 ∈ 𝑉𝑉:∃𝒘𝒘 ∈ 𝑉𝑉:𝒗𝒗 + 𝒘𝒘 = 𝟎𝟎𝑉𝑉

5. ∀𝒗𝒗 ∈ 𝑉𝑉, 𝜆𝜆, 𝜇𝜇 ∈ 𝐹𝐹: 𝜆𝜆 𝜇𝜇𝒗𝒗 = 𝜆𝜆𝜇𝜇 𝒗𝒗

6. for 1𝐹𝐹 ∈ 𝐹𝐹:∀𝑣𝑣 ∈ 𝑉𝑉: 1𝐹𝐹𝒗𝒗 = 𝒗𝒗

7. ∀𝜆𝜆 ∈ 𝐹𝐹:∀𝒗𝒗,𝒘𝒘 ∈ 𝑉𝑉: 𝜆𝜆 𝒗𝒗 + 𝒘𝒘 = 𝜆𝜆𝒗𝒗 + 𝜆𝜆𝒘𝒘

8. ∀𝜆𝜆, 𝜇𝜇 ∈ 𝐹𝐹,𝒗𝒗 ∈ 𝑉𝑉: 𝜆𝜆 + 𝜇𝜇 𝒗𝒗 = 𝜆𝜆𝒗𝒗 + 𝜇𝜇𝒗𝒗

𝑽𝑽, + is an Abelian group The multiplication is 
compatible with the addition



Vector spaces

• Subspaces
• A non-empty subset 𝑊𝑊 ⊂ 𝑉𝑉 is a subspace if 𝑊𝑊 is a vector space (w.r.t the 

induced addition and scalar multiplication).
• Only need to check if the addition and scalar multiplication are closed.

𝒗𝒗,𝒘𝒘 ∈ 𝑊𝑊 ⇒ 𝒗𝒗 + 𝒘𝒘 ∈ 𝑊𝑊
𝒗𝒗 ∈ 𝑊𝑊, 𝜆𝜆 ∈ 𝐹𝐹 ⇒ 𝜆𝜆𝒗𝒗 = 𝑊𝑊

• What are the subspaces of ℝ3?



Examples Spaces

• Function spaces:
• Space of all functions 𝑓𝑓:ℝ → ℝ
• Addition: 𝑓𝑓 + 𝑔𝑔 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑥𝑥
• Scalar multiplication: 𝜆𝜆𝑓𝑓 𝑥𝑥 = 𝜆𝜆𝑓𝑓 𝑥𝑥
• Check the definition



Examples Spaces

• Function spaces:
• Domains and codomain need to be ℝ
• For example: space of all functions 𝑓𝑓: 0,1 5 → ℝ8

• Codomain must be a vector space (Why?)



Examples of Subspaces

• Continuous / differentiable functions
• The continuous / differentiable functions form a subspace of the space of all 

functions 𝑓𝑓:𝐷𝐷 ⊂ 𝑅𝑅𝑚𝑚 → 𝑅𝑅𝑛𝑛

• Why?

• Polynomials
• The polynomials form a subspace of the space of functions 𝑓𝑓:ℝ → ℝ
• The polynomials of degree ≤ 𝑛𝑛 again form a subspace
• Adding polynomials

�
𝑖𝑖=1

𝑛𝑛
𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + �

𝑖𝑖=1

𝑛𝑛
𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 = �

𝑖𝑖=1

𝑛𝑛
𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 𝑥𝑥𝑖𝑖



Constructing Spaces

Linear Span
• The linear span of a subset 𝑆𝑆 ⊂ 𝑉𝑉 is the “smallest subspace” of 𝑉𝑉 that 

contains 𝑆𝑆
• What does that mean?

• For any subspace 𝑊𝑊 such that 𝑆𝑆 ⊂ 𝑊𝑊 ⊂ 𝑉𝑉, we have 𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛 𝑆𝑆 ⊂ 𝑊𝑊
• Construction: Any 𝑣𝑣 ∈ 𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛 𝑆𝑆 is a finite linear combination of elements 

of 𝑆𝑆

𝑣𝑣 = �
𝑖𝑖=1

𝑛𝑛
𝜆𝜆𝑖𝑖𝑠𝑠𝑖𝑖

Spanning set
• A subset 𝑆𝑆 ⊂ 𝑉𝑉 is a spanning set of 𝑉𝑉 if 𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛 𝑆𝑆 = 𝑉𝑉



Vector spaces

• Linear independence
• A subset 𝑆𝑆 ⊂ 𝑉𝑉 is linearly independent if no vector of 𝑆𝑆 is a finite linear 

combination of the other vectors of 𝑆𝑆

• Basis
• A basis of a vector space is a linearly independent spanning set.



Dimension

• Lemma
• If 𝑉𝑉 has a finite basis of 𝑛𝑛 elements, then all bases of 𝑉𝑉 have 𝑛𝑛 elements

• Dimension
• If 𝑉𝑉 has a finite basis, then the dimension of 𝑉𝑉 is the number of elements 

of the basis
• If 𝑉𝑉 has no finite basis, then the dimension of 𝑉𝑉 is infinite



Examples

• Polynomials of degree ≤ 𝒏𝒏
• A basis? What is the dimension?
Solution:
• An example of a basis is 1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
• Dimension is 𝑛𝑛 + 1

• Space of all polynomials
• A basis? What is the dimension?
Solution:
• An example of a basis is 1, 𝑥𝑥, 𝑥𝑥2, …
• Dimension is infinite



Finite dimensional vector spaces

• Vector spaces
• Any finite-dim., real vector space is isomorphic to ℝ𝑛𝑛

• Array of numbers
• Behave like arrows in a flat (Euclidean) geometry

• Proof:
• Construct basis
• Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases



Another Example of a Vector Space

Representation of a triangle mesh in ℝ𝟑𝟑

• Vertices : a finite set 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 of points in ℝ3

• Faces: a list of triplets, e.g. 2, 34, 7 , … , 14, 7, 5



Another Example of a Vector Space

• Shape space
• Vary the vertices, but keep the face list fixed
• Is isomorphic to ℝ3𝑛𝑛



Linear Maps



Linear Maps

Definition
• A map 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 between vector spaces 𝑉𝑉,𝑊𝑊 is linear if 

• ∀𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉: 𝐿𝐿 𝑣𝑣1 + 𝑣𝑣2 = 𝐿𝐿 𝑣𝑣1 + 𝐿𝐿 𝑣𝑣2
• ∀𝑣𝑣 ∈ 𝑉𝑉, 𝜆𝜆 ∈ 𝐹𝐹: 𝐿𝐿 𝜆𝜆𝑣𝑣 = 𝜆𝜆𝐿𝐿 𝑣𝑣

This means that 𝐿𝐿 is compatible with the linear structure of 
𝑉𝑉 and 𝑊𝑊



Linear Maps

Definition
• A map 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 between vector spaces 𝑉𝑉,𝑊𝑊 is linear if 

• ∀𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉: 𝐿𝐿 𝑣𝑣1 + 𝑣𝑣2 = 𝐿𝐿 𝑣𝑣1 + 𝐿𝐿 𝑣𝑣2
• ∀𝑣𝑣 ∈ 𝑉𝑉, 𝜆𝜆 ∈ 𝐹𝐹: 𝐿𝐿 𝜆𝜆𝑣𝑣 = 𝜆𝜆𝐿𝐿 𝑣𝑣

Some properties
• 𝐿𝐿 0𝑉𝑉 = 0𝑊𝑊
• Proof: 𝐿𝐿 0𝑉𝑉 = 𝐿𝐿 0 0𝑣𝑣 = 0𝐿𝐿 0𝑉𝑉 = 0𝑊𝑊



Linear Maps

Definition
• A map 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 between vector spaces 𝑉𝑉,𝑊𝑊 is linear if 

• ∀𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉: 𝐿𝐿 𝑣𝑣1 + 𝑣𝑣2 = 𝐿𝐿 𝑣𝑣1 + 𝐿𝐿 𝑣𝑣2
• ∀𝑣𝑣 ∈ 𝑉𝑉, 𝜆𝜆 ∈ 𝐹𝐹: 𝐿𝐿 𝜆𝜆𝑣𝑣 = 𝜆𝜆𝐿𝐿 𝑣𝑣

Some properties
• The image 𝐿𝐿 𝑉𝑉 is a subspace of 𝑊𝑊
• Proof: Show addition and scalar multiplication is closed

𝐿𝐿 𝑣𝑣1 + 𝐿𝐿 𝑣𝑣2 = 𝐿𝐿 𝑣𝑣1 + 𝑣𝑣2 ∈ 𝑊𝑊
𝜆𝜆𝐿𝐿 𝑣𝑣 = 𝐿𝐿 𝜆𝜆𝑣𝑣 ∈ 𝑊𝑊



Linear Maps

Definition
• A map 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 between vector spaces 𝑉𝑉,𝑊𝑊 is linear if 

• ∀𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉: 𝐿𝐿 𝑣𝑣1 + 𝑣𝑣2 = 𝐿𝐿 𝑣𝑣1 + 𝐿𝐿 𝑣𝑣2
• ∀𝑣𝑣 ∈ 𝑉𝑉, 𝜆𝜆 ∈ 𝐹𝐹: 𝐿𝐿 𝜆𝜆𝑣𝑣 = 𝜆𝜆𝐿𝐿 𝑣𝑣

Some properties
• The set of linear maps from 𝑉𝑉 to 𝑊𝑊 forms a subspace of the 

space of all functions
• Proof:    If 𝐿𝐿, �𝐿𝐿 are linear, then 𝐿𝐿 + �𝐿𝐿 is linear

If 𝐿𝐿 is linear, then 𝜆𝜆𝐿𝐿 is linear



Linear Map Representation

Construction
• A linear map 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 is uniquely determined if we specify the image of 

each basis vector of a basis of 𝑉𝑉
• Proof: We have 𝑣𝑣 = ∑𝑗𝑗 𝛼𝛼j𝑣𝑣𝑗𝑗 , hence

𝐿𝐿 𝑣𝑣 = 𝐿𝐿 �
𝑗𝑗

𝛼𝛼𝑗𝑗𝑣𝑣𝑗𝑗 = �
𝑗𝑗

𝛼𝛼𝑗𝑗𝐿𝐿 𝑣𝑣𝑗𝑗



Matrix Representation

• Let 𝑉𝑉 and 𝑊𝑊 be vector spaces with respective bases 𝑣𝑣 = 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 and 𝑤𝑤 =
𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑚𝑚

• Suppose 𝐿𝐿:𝑉𝑉 → 𝑊𝑊 is a linear mapping, such that 
𝐿𝐿 𝑣𝑣1 = 𝑎𝑎11𝑤𝑤1 + 𝑎𝑎21𝑤𝑤2 + ⋯+ 𝑎𝑎𝑚𝑚1𝑤𝑤𝑚𝑚

…………………………………………………
𝐿𝐿 𝑣𝑣𝑛𝑛 = 𝑎𝑎1𝑛𝑛𝑤𝑤1 + 𝑎𝑎2𝑛𝑛𝑤𝑤2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑤𝑤𝑚𝑚

• The matrix representation of 𝐿𝐿 w.r.t. the basis 𝑣𝑣 and 𝑤𝑤 is 

𝐴𝐴 =
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
The 𝑗𝑗𝑡𝑡𝑡-column of 𝐴𝐴 is formed by the coefficients of 𝐿𝐿 𝑣𝑣𝑗𝑗



Example

• 𝐿𝐿:ℝ2 → ℝ3, 𝑠𝑠. 𝑡𝑡. 𝑥𝑥,𝑦𝑦 → 𝑥𝑥 + 3𝑦𝑦,2𝑥𝑥 + 5𝑦𝑦,7𝑥𝑥 + 9𝑦𝑦

• Find the matrix representation of 𝐿𝐿 w.r.t the standard bases of ℝ2

and ℝ3

• Answer: 𝐿𝐿 1,0 = 1,2,7 , 𝐿𝐿 0,1 = 3,5,9 , hence the matrix of 𝐿𝐿, 
w.r.t the standard bases is the 3 × 2 matrix

1 3
2 5
7 9



Explicitely
• The coefficients 𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑖𝑖 are related by 𝛽𝛽𝑖𝑖 = ∑𝑗𝑗 𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗

𝐿𝐿 𝑣𝑣 = 𝐿𝐿 �
𝑗𝑗

𝛼𝛼𝑗𝑗𝑣𝑣𝑗𝑗 = �
𝑗𝑗

𝛼𝛼𝑗𝑗𝐿𝐿 𝑣𝑣𝑗𝑗 = �
𝑗𝑗

𝛼𝛼𝑗𝑗�
𝑖𝑖

𝑎𝑎𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖

= �
𝑖𝑖

�
𝑗𝑗

𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗 𝑤𝑤𝑖𝑖

This can be written as a matrix-vector product
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛

=
𝛽𝛽1
⋮
𝛽𝛽𝑚𝑚

= �
𝑖𝑖

𝛽𝛽𝑖𝑖 𝑤𝑤𝑖𝑖 = 𝑤𝑤

Matrix Representation



Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?
• First row

𝐴𝐴 1
0 = 1

0
• Second row

𝐴𝐴 0
1 = 1.3

1

𝐴𝐴 =



Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?
• First row

𝐴𝐴 1
0 = 1

0
• Second row

𝐴𝐴 0
1 = 1.3

1

𝐴𝐴 = 1 1.3
0 1



Reminder: Properties of Matrices

Symmetric                          Orthogonal
• 𝐴𝐴𝑇𝑇 = 𝐴𝐴 𝐴𝐴𝑇𝑇 = 𝐴𝐴−1

Product is not commutive!
• Find an example with 𝐴𝐴𝐴𝐴 ≠ 𝐴𝐴𝐴𝐴

Product of symmetric matrices may not be symmetric
• Find an example

Product of orthogonal matrices is orthogonal
𝐴𝐴𝐴𝐴 𝑇𝑇 = 𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇 = 𝐴𝐴−1𝐴𝐴−1 = 𝐴𝐴𝐴𝐴 −1



Example of Matrices

Rotation of the plane
• Linear?
• Consider standard basis of ℝ2

Matrix?
cos𝛼𝛼 − sin𝛼𝛼
sin𝛼𝛼 cos𝛼𝛼

• Transposition reverse orientation of the rotation
cos𝛼𝛼 sin𝛼𝛼
−sin𝛼𝛼 cos𝛼𝛼

Hence matrix is orthogonal 𝐴𝐴𝑇𝑇 = 𝐴𝐴−1



Examples of Linear Maps

Linear operators on a function space

Derivatives
• Differentiation maps functions to functions

𝜕𝜕
𝜕𝜕𝑥𝑥

:𝐶𝐶𝑖𝑖 ℝ ↦ 𝐶𝐶𝑖𝑖−1 ℝ

𝑓𝑓 ↦
𝜕𝜕
𝜕𝜕𝑥𝑥 𝑓𝑓

Why is it linear?
• Basic rules of differentiation
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑓𝑓 + 𝑔𝑔 = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑓𝑓 + 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔 and      𝜕𝜕

𝜕𝜕𝜕𝜕
𝜆𝜆𝑓𝑓 = 𝜆𝜆 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓



Matrix Representation

Derivative on a space of polynomials
• Consider polynomials of degree ≤ 3 and the monomial basis
• What is the matrix representation of the derivative?

• Solution: Evaluate 𝜕𝜕
𝜕𝜕𝜕𝜕

on the basis

• 𝜕𝜕
𝜕𝜕𝜕𝜕

1 = 0, 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑥𝑥 = 1, 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑥𝑥2 = 2𝑥𝑥, 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑥𝑥3 = 3𝑥𝑥2

Results are the columns of the matrix
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



Examples of Linear Maps

Integrals on 𝑪𝑪𝟎𝟎 𝒂𝒂,𝒃𝒃
• Integration maps a continuous function to a number

𝐼𝐼:𝐶𝐶0 𝑎𝑎, 𝑏𝑏 ↦ ℝ

𝐼𝐼 𝑓𝑓 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓𝑓𝑓𝑥𝑥

• The map is linear:

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 + 𝑔𝑔 𝑓𝑓𝑥𝑥 = �

𝑎𝑎

𝑏𝑏
𝑓𝑓𝑓𝑓𝑥𝑥 + �

𝑎𝑎

𝑏𝑏
𝑔𝑔𝑓𝑓𝑥𝑥

�
𝑎𝑎

𝑏𝑏
𝜆𝜆𝑓𝑓𝑓𝑓𝑥𝑥 = 𝜆𝜆�

𝑎𝑎

𝑏𝑏
𝑓𝑓𝑓𝑓𝑥𝑥



Matrix Representation

Integrals on a space of polynomials
• Consider polynomials of degree≤ 3 over the interval 0,1 and the monomial 

basis.
• What is the matrix representation of the integral?

• Solution: Evaluate ∫0
1 𝑓𝑓𝑥𝑥 on the basis

∫0
1 1𝑓𝑓𝑥𝑥 = 1,      ∫0

1 𝑥𝑥𝑓𝑓𝑥𝑥 = 1
2
,     ∫0

1 𝑥𝑥2𝑓𝑓𝑥𝑥 = 1
3
,      ∫0

1 𝑥𝑥3𝑓𝑓𝑥𝑥 = 1
4

Results are the columns of the matrix

1
1
2

1
3

1
4



Basis Transformations

Matrix representation of 𝑳𝑳

• 𝐴𝐴 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 𝐴𝐴 = 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛
• Φ𝐴𝐴 𝑒𝑒𝑖𝑖 = 𝑣𝑣𝑖𝑖 Φ𝐵𝐵 𝑒𝑒𝑖𝑖 = 𝑤𝑤𝑖𝑖
• 𝑀𝑀 maps 𝑒𝑒𝑖𝑖 to Φ𝐵𝐵

−1 ∘ 𝐿𝐿 ∘ Φ𝐴𝐴 𝑒𝑒𝑖𝑖



Basis Transformations

• Basis transformation

• 𝐴𝐴 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 �̃�𝐴 = �𝑣𝑣1, �𝑣𝑣2, … , �𝑣𝑣𝑛𝑛
• Φ𝐴𝐴 𝑒𝑒𝑖𝑖 = 𝑣𝑣𝑖𝑖 Φ �𝐴𝐴 𝑒𝑒𝑖𝑖 = �𝑣𝑣𝑖𝑖
• 𝑇𝑇 maps 𝑒𝑒𝑖𝑖 to Φ�𝐴𝐴

−1 ∘ Φ𝐴𝐴 𝑒𝑒𝑖𝑖



Basis Transformations



Basis Transformations

�𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑇𝑇−1



Basis Transformations

In the special case that 𝑉𝑉 equals 𝑊𝑊:

�𝑀𝑀 = 𝑇𝑇𝑀𝑀𝑇𝑇−1
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