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Vector Spaces



Vectors

Vectors are arrows in space
Classically: 2 or 3 dim. Euclidean space



Vector Operations

“Adding” Vectors:
concatenation



Vector Operations

Scalar Multiplication:
Scaling vectors (incl. mirroring)



You can combine It

Linear Combinations:

This i1s basically all you can do.

n
r = z Aivi
=1



Vector Spaces

* Definition: A vector space over a fleld F (e.g. R) I1s a set IV together
with two operations
* Addition of vectorsu = v +w
* Multiplication with scalars w = Av

such that

vuv,welV:(u+v)+w=u+ w+w) vveV,ALu€F:A(uv) = (An)v

Vu,velV:u+v=v+u forlpe F:VveV:1pv=v

30, eV:VvveV:v+ 0y =v VAeEF:VoweV:A(v+w) =Av+ Aw

N W NN
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vveV:awelV:v+w=0, VLueEF,veV:A+wv=Av+ uv

: : The multiplication is
[(V’ +) is an Abelian group} [compatible with the addition}




Vector spaces

* Subspaces

* A non-empty subset W c V Is a subspace it W is a vector space (w.r.t the
Induced addition and scalar multiplication).

* Only need to check If the addition and scalar multiplication are closed.
vweW >v+wel
veEW,AEF >Av=W

* What are the subspaces of R3?



Examples Spaces

* Function spaces:
* Space of all functions f:R - R
« Addition: (f + g)(x) = f(x) + g(x)
e Scalar multiplication: (Af)(x) = Af(x)
* Check the definition




Examples Spaces

* Function spaces:
* Domains and codomain need to be R
* For example: space of all functions f:[0,1]°> - R®
* Codomain must be a vector space (Why?)

A 4



Examples of Subspaces

 Continuous / differentiable functions

* The continuous / differentiable functions form a subspace of the space of all
functions f:D € R™ - R"

* Why?

* Polynomials
* The polynomials form a subspace of the space of functions f: R - R
* The polynomials of degree < n again form a subspace
* Adding polynomials

n . n . n .
z a;x' + Z b;x' = Z (a; + b;)x!



Constructing Spaces

Linear Span

* The /inear span of a subset S C V is the “smallest subspace” of V that
contains S

* What does that mean?
* For any subspace W such that S ¢ W < V, we have span(S) c W

* Construction: Any v € span(S) is a finite linear combination of elements

of §
n .
v = z A;st
=1
Spanning set

* Asubset S c V is a spanning setof V if span(S) =V



Vector spaces

* Linear independence

* Asubset S c V is /inearly independent it no vector of S Is a finite linear
combination of the other vectors of §

* Basis
* A basis of a vector space Is a linearly independent spanning set.



Dimension

* Lemma
* If V has a finite basis of n elements, then all bases of V have n elements

* Dimension

* I[f VV has a finite basis, then the dimension of V Is the number of elements
of the basis

* If V has no finite basis, then the dimension of V' Is infinite



Examples

* Polynomials of degree < n
* A basis? What is the dimension?
Solution:
« An example of a basis is {1, x, x2, ..., x™}
* Dimensionisn+1

* Space of all polynomials
* A basis? What Is the dimension?
Solution:
* An example of a basis is {1, x, x4, ...}
* Dimension is infinite



Finite dimensional vector spaces

* Vector spaces

* Any finite-dim., real vector space is isomorphic to R"
* Array of numbers
* Behave like arrows in a flat (Euclidean) geometry

* Proof:
* Construct basis
* Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases



Another Example of a Vector Space

Representation of a triangle mesh in R?
e Vertices : a finite set {vy, ..., v,} of points in R3

* Faces: a list of triplets, e.g. {{2,34,7}, ..., {14,7,5}}

Number of Vertices |34835
Index X Y z
‘: Mo [0.0378207 [0.12794 0.00447467 - )
- 1 |0.0447794 [0.128887 0.00190497 - A NRN
r2 [oo06s0005 (0151244  [0.0371953 \ ! W |‘,|
1 \AAA
™3 |-0.00228741 (0.13015 00232201 RN
\ /7 - VA \
T4 [00226054 [0.126675 0.00715587 =& VWA VY
NV \ \ W \
\
Center 0.0 0.0 0.0 VAV VAN ,l
WA AVVAATA NN
X VAN VVyil )
Number of Elements 69473 YWV '|‘ A 2 '
\f \ /NN \ \A
Vertices per Element 3 ¥ ATV VATATA '-“ RN XA v \ A \
Index 0 1 2 VWY VI/IN | DAV ‘l‘ WAAAA
ALY s 4V VTN - ANV A
AYAYARNTA! & 1 TAYAYATATA 1 >
“ I 1640 [10645 10769 10768 P NAAAAN . A RN AN
- » \ ) |! ) AN Vi
[T 1640 |10644 10645 10768 =< 3 VNVNVATINRY AN AV
1 \ N1 \ \\ \/
[~ 1640 [780 10996 10992 P ,,"""l\ N N |l.‘ ...” VNP
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I~ 1640 (9978 9765 8572 P NAVATA SRR : N e
! | X )
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1 1
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Another Example of a Vector Space

* Shape space
* Vary the vertices, but keep the face list fixed
* |s isomorphic to R3"



Linear Maps



Linear Maps

Definition
* Amap L:V - W between vector spaces I/, W is linear If
* Vvl, %) el: L(v1 + vz) — L(vl) + L(Uz)
e VveV,A€eF: L(Av) = AL(v)

This means that L 1s compatible with the linear structure of
Vand W



Linear Maps

Definition
* Amap L:V - W between vector spaces I/, W is linear If
* Vv, v, EV: L(vy +vy) = L(vy) + L(v,)
e VveV,A€eF: L(Av) = AL(v)

Some properties

¢ L(OV) — OW
* Proof: L(0y) = L(00,) = 0L(0y) = 0y



Linear Maps

Definition
* Amap L:V - W between vector spaces I/, W is linear If
* Yv, v, EV: L(vy +vy) = L(vy) + L(vy)
e VveV,A€eF: L(Av) = AL(v)

Some properties
* The image L(V) is a subspace of W
* Proof: Show addition and scalar multiplication is closed
Lw)+L(wv,) =L(wv,+v,) EW
AL(v) =L(Av) e W



Linear Maps

Definition
* Amap L:V - W between vector spaces I/, W is linear If
* Yv, v, EV: L(vy +vy) = L(vy) + L(vy)
e VveV,A€eF: L(Av) = AL(v)

Some properties

* The set of linear maps from V to W forms a subspace of the
space of all functions

e Proof: If L, L arelinear, then L + L is linear
If L is linear, then AL is linear



Linear Map Representation

Construction

* Alinear map L:V — W is uniquely determined if we specify the image of
each basis vector of a basis of V

* Proof: We have v = j av;, hence

L(v) =L (2 ajvj> = z a;L(v;)

J J



Matrix Representation

* Let V and W be vector spaces with respective bases v = (v4,v5, ..., ;) and w =
(W]_, Wy, ..., Wm)

* Suppose L:V —» W is a linear mapping, such that
L(vi) = a;wy + agiwy + -+ apm Wiy

L(vn) = ApW1 T QypWy + - + QWi

* The matrix representation of L w.r.t. the basis v and w is

A1 0 Qin
A = . . .
Am1  *° Amn

The jt"-column of 4 is formed by the coefficients of L(v;)



Example
* L:R? - R3,s.t.(x,y) = (x + 3y,2x + 5y, 7x + 9y)

* Find tf})e matrix representation of L w.r.t the standard bases of R?
and R

* Answer: L(1,0) = (1,2,7),L(0,1) = (3,5,9), hence the matrix of L,
w.r.t the standard bases Is the 3 X 2 matrix

1 3
7 9



Matrix Representation

Explicitely

* The coefficients a; and B; are related by f; = Z a;;a;

L(v)=L(Za]v]> Za]L(v]) zajzauwl

J

l ] i

This can be written as a matrix-vector product

wao (B
)l



Example Matrices

Shearing

« Consider the standard basis of R?
* Matrix?
* First row

* Second row

| ©G Farin



Example Matrices

Shearing

« Consider the standard basis of R?
* Matrix?
* First row

4(p) = (o)
(1) =(7)

* Second row

| ©G Farin




Reminder: Properties of Matrices

Symmetric Orthogonal
«c AT =A AT =471

Product is not commutive!
* Find an example with AB + BA

Product of symmetric matrices may not be symmetric
* Find an example

Product of orthogonal matrices /s orthogonal
(AB)T = BTAT =B~ 1471 = (4B)™!



Example of Matrices = —

€.
Rotation of the plane
* Linear? e’
 Consider standard basis of R?
Matrix?
(Cosa —sina) X
sin cosa

OC Farin

* Transposition reverse orientation of the rotation
( cosa sin a)

—sina cos«a

Hence matrix is orthogonal AT = A™1



Examples of Linear Maps

Linear operators on a function space

Derivatives
* Differentiation maps functions to functions

0 . .
—:CY(R) » C'"1(R)
dx

Why is it linear?
* Basic rules of differentiation

9 9 9
Ut =-—f+--g and —Uf)=1-_f



Matrix Representation

Derivative on a space of polynomials
* Consider polynomials of degree < 3 and the monomial basis
* What Is the matrix representation of the derivative?

. 0 .
 Solution: Evaluate pylell the basis
L0 . a o 5 o 3
axl—O, axx—l, =X = 2X, =X = 3x

2

Results are the columns of the matrix
0 1

S o N O
oS W o O

0 0
0 0
0 0



Examples of Linear Maps

Integrals on C°([a, b])

* Integration maps a continuous function to a number
I:C°([a,b]) » R
b

1(f) = j fdx

* The map is linear:

fb(f + g)dx = fbfdx + Jbgdx
fb/lfdx = Afbfdx



Matrix Representation

Integrals on a space of polynomials
 Consider polynomials of degree< 3 over the interval [0,1] and the monomial
basis.
* What is the matrix representation of the integral?

. 1 .
» Solution: Evaluate |, dx on the basis

1 1

1 1
Joldx=1, [ xdx==> [

1 1 1
xédx == [ x3dx ==
3 0 4

Results are the columns of the matrix

(1111)
2 3 4



Basis Transformations

Matrix representation of L

R™ R™
D,
\ , /
vV —m W
e A ={v,v,,..,0,} B ={w;,w,,..,w,}
* Oy(e;) = vy dp(e) = w;

* M maps e; to @zt o L o d,(e;)



Basis Transformations

e Basis transformation

CI)A ° A — {vl’ vZ’ ...,Un}
T « Dy(e) = vy
* T maps e; to ®;" o dy(e;)

RTL



Basis Tra nsformations




Basis Tra nsformations

\ / S

R"




Basis Transformations

In the special case that V equals W'

T

R™

'
R

n

LA
AN
1\7=71"WMT‘1

Rn

}
R™

T
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